Funcons-beta: Abrupting *

The PLanCompS Project

Abrupting.cbs/ | PLAIN | PRETTY

Abruptly terminating

[stuck
abrupted
finalise-abrupting
abrupt
handle-abrupt
finally]

T, T' T" <: values

stuck : = empty-type

stuck does not have any computation. It is used to represent the result of a transition that causes
the computation to terminate abruptly.

abrupted(_:values?)
%

abrupted(V) in a label on a tranistion indicates abrupt termination for reason V. abrupted() indicates
the absence of abrupt termination.

finalise-abrupting(X : = T) : = T | null-type

~+ handle-abrupt(X, null-value)

finalise-abrupting(X) handles abrupt termination of X for any reason.

abrupt(_ : values) : = empty-type

abrupt(V) terminates abruptly for reason V.

brupted(V
abrupt(V : values) 2brupted), ik

handle-abrupt(_: T'=T,_: T"=T): T'=T

*Suggestions for improvement: plancomps@gmail . com.
Reports of issues: https://github.com/plancomps/CBS-beta/issues.

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Computations/Abnormal/Abrupting/Abrupting.cbs
/CBS-beta/docs/Funcons-beta/Computations/Abnormal/Abrupting/index.html
/CBS-beta/math/Funcons-beta/Computations/Abnormal/Abrupting/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

handle-abrupt(X, Y') first evaluates X. If X terminates normally with value V/, then V is returned
and Y is ignored. If X terminates abruptly for reason V, then Y is executed with V' as given value.

handle-abrupt(X, Y) is associative, with abrupt(given) as left and right unit. handle-abrupt(X, else(Y’, abrupt(given)))
ensures propagation of abrupt termination for the given reason if Y fails

% abrupted() X'

handle-abrupt(X, Y) 2?40, handle-abrupt(X’, Y)

abrupted(V:T")
X "X

handle-abrupt(X, Y) 22240, give(v, v)
handle-abrupt(V : T, Y) ~ V

finally(_: = T, _:=null-type) : = T

finally(X, Y) first executes X. If X terminates normally with value V, then Y is executed before
terminating normally with value V. If X terminates abruptly for reason V/, then Y is executed before

terminating abruptly with the same reason V.

X abrupted() X!

finally(X, Y) 22240, Gnaiy(X!, ¥)

abrupted(V:values)
X — X

finally(X, Y) brupted(), sequential(Y’, abrupt(V))

finally(V : T, Y) ~» sequential(Y, V)

	Abruptly terminating

