
Funcons-beta: Abrupting ∗

The PLanCompS Project

Abrupting.cbs | PLAIN | PRETTY

Abruptly terminating

[Funcon stuck

Entity abrupted

Funcon finalise-abrupting

Funcon abrupt

Funcon handle-abrupt

Funcon finally]

Meta-variables T ,T ′,T ′′ <: values

Funcon stuck :⇒ empty-type

stuck does not have any computation. It is used to represent the result of a transition that causes

the computation to terminate abruptly.

Entity
abrupted(:values?)−−−−−−−−−−−→

abrupted(V) in a label on a tranistion indicates abrupt termination for reason V . abrupted() indicates

the absence of abrupt termination.

Funcon finalise-abrupting(X :⇒T) :⇒T | null-type

 handle-abrupt(X , null-value)

finalise-abrupting(X) handles abrupt termination of X for any reason.

Funcon abrupt(: values) :⇒ empty-type

abrupt(V) terminates abruptly for reason V .

Rule abrupt(V : values)
abrupted(V)−−−−−−−→ stuck

Funcon handle-abrupt(: T ′⇒T , : T ′′⇒T) : T ′⇒T

∗Suggestions for improvement: plancomps@gmail.com.

Reports of issues: https://github.com/plancomps/CBS-beta/issues.

1

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Computations/Abnormal/Abrupting/Abrupting.cbs
/CBS-beta/docs/Funcons-beta/Computations/Abnormal/Abrupting/index.html
/CBS-beta/math/Funcons-beta/Computations/Abnormal/Abrupting/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

handle-abrupt(X ,Y) first evaluates X . If X terminates normally with value V , then V is returned

and Y is ignored. If X terminates abruptly for reason V , then Y is executed with V as given value.

handle-abrupt(X ,Y) is associative, with abrupt(given) as left and right unit. handle-abrupt(X , else(Y , abrupt(given)))

ensures propagation of abrupt termination for the given reason if Y fails

Rule
X
abrupted()−−−−−−→ X ′

handle-abrupt(X ,Y)
abrupted()−−−−−−→ handle-abrupt(X ′,Y)

Rule
X
abrupted(V :T ′′)−−−−−−−−−→ X ′

handle-abrupt(X ,Y)
abrupted()−−−−−−→ give(V ,Y)

Rule handle-abrupt(V : T ,Y) V

Funcon finally(:⇒T , :⇒ null-type) :⇒T

finally(X ,Y) first executes X . If X terminates normally with value V , then Y is executed before

terminating normally with value V . If X terminates abruptly for reason V , then Y is executed before

terminating abruptly with the same reason V .

Rule
X
abrupted()−−−−−−→ X ′

finally(X ,Y)
abrupted()−−−−−−→ finally(X ′,Y)

Rule
X
abrupted(V :values)−−−−−−−−−−−→ X ′

finally(X ,Y)
abrupted()−−−−−−→ sequential(Y , abrupt(V))

Rule finally(V : T ,Y) sequential(Y ,V)

2

	Abruptly terminating

