
Funcons-beta: Throwing ∗

The PLanCompS Project

Throwing.cbs | PLAIN | PRETTY

Throwing

[Datatype throwing

Funcon thrown

Funcon finalise-throwing

Funcon throw

Funcon handle-thrown

Funcon handle-recursively

Funcon catch-else-throw]

Meta-variables R,S ,T ,T ′,T ′′ <: values

Datatype throwing ::= thrown(: values)

thrown(V) is a reason for abrupt termination.

Funcon finalise-throwing(X :⇒T) :⇒T | null-type

 finalise-abrupting(X)

finalise-throwing(X) handles abrupt termination of X due to executing throw(V).

Funcon throw(V : T) :⇒ empty-type

 abrupt(thrown(V))

throw(V) abruptly terminates all enclosing computations uTil it is handled.

Funcon handle-thrown(: T ′⇒T , : T ′′⇒T) : T ′⇒T

handle-thrown(X ,Y) first evaluates X . If X terminates normally with value V , then V is returned

and Y is ignored. If X terminates abruptly with a thrown eTity having value V , then Y is executed

with V as given value.

handle-thrown(X ,Y) is associative, with throw(given) as unit. handle-thrown(X , else(Y , throw(given)))

ensures that if Y fails, the thrown value is re-thrown.

∗Suggestions for improvement: plancomps@gmail.com.

Reports of issues: https://github.com/plancomps/CBS-beta/issues.

1

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Computations/Abnormal/Throwing/Throwing.cbs
/CBS-beta/docs/Funcons-beta/Computations/Abnormal/Throwing/index.html
/CBS-beta/math/Funcons-beta/Computations/Abnormal/Throwing/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

Rule
X
abrupted()−−−−−−→ X ′

handle-thrown(X ,Y)
abrupted()−−−−−−→ handle-thrown(X ′,Y)

Rule
X
abrupted(thrown(V ′′:values))−−−−−−−−−−−−−−−−→ X ′

handle-thrown(X ,Y)
abrupted()−−−−−−→ give(V ′′,Y)

Rule
X
abrupted(V ′:∼ throwing)−−−−−−−−−−−−−−→ X ′

handle-thrown(X ,Y)
abrupted(V ′)−−−−−−−→ handle-thrown(X ′,Y)

Rule handle-thrown(V : T ,Y) V

Funcon handle-recursively(X : S⇒T ,Y : R⇒T) : S⇒T
 handle-thrown(X , else(handle-recursively(Y ,Y), throw(given)))

handle-recursively(X ,Y) behaves similarly to handle-thrown(X ,Y), except that another copy of the

handler attempts to handle any values thrown by Y . Thus, many thrown values may get handled by

the same handler.

Funcon catch-else-throw(P : values,Y :⇒T) :⇒T
 else(case-match(P,Y), throw(given))

handle-thrown(X , catch-else-throw(P,Y)) handles those values thrown by X that match pattern P.

Other thrown values are re-thrown.

2

	Throwing

