Funcons-beta: Throwing *

The PLanCompS Project

Throwing.cbs | PLAIN | PRETTY

Throwing

[throwing
thrown
finalise-throwing
throw
handle-thrown
handle-recursively

catch-else-throw |

R,S, T, T' T" <:values

throwing ::= thrown(_: values)

thrown(V) is a reason for abrupt termination.

finalise-throwing(X : = T) : = T | null-type
~ finalise-abrupting(X)

finalise-throwing(X) handles abrupt termination of X due to executing throw(V).

throw(V : T) : = empty-type
~ abrupt(thrown(V))

throw(V) abruptly terminates all enclosing computations uTil it is handled.

handle-thrown(_: T'=T,_: T"=T): T'=T

handle-thrown(X, Y) first evaluates X. If X terminates normally with value V, then V is returned
and Y is ignored. If X terminates abruptly with a thrown eTity having value V/, then Y is executed
with V' as given value.

handle-thrown(X, Y) is associative, with throw(given) as unit. handle-thrown(X, else(Y, throw(given)))
ensures that if Y fails, the thrown value is re-thrown.

*Suggestions for improvement: plancomps@gmail.com.
Reports of issues: https://github.com/plancomps/CBS-beta/issues|

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Computations/Abnormal/Throwing/Throwing.cbs
/CBS-beta/docs/Funcons-beta/Computations/Abnormal/Throwing/index.html
/CBS-beta/math/Funcons-beta/Computations/Abnormal/Throwing/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

abrupted(

) X/

handle-thrown(X, Y) sbrupted(), handle-thrown(X’, Y)

X

abrupted(thrown(V”:values

)) X/
handle-thrown(X, Y)) give(V" Y)

abrupted(V’:~ throwing)

X

abrupted(

X X/

abrupted(

handle-thrown(X, Y)) handle-thrown(X’, Y)
handle-thrown(V : T, Y) ~ V

handle-recursively(X : S=T,Y R=T):5S=T
~» handle-thrown(X, else(handle-recursively(Y, Y), throw(given)))

handle-recursively(X, Y) behaves similarly to handle-thrown(X, Y'), except that another copy of the
handler attempts to handle any values thrown by Y. Thus, many thrown values may get handled by
the same handler.

catch-else-throw(P : values, Y : = T) : =T

~ else(case-match(P, Y), throw(given))

handle-thrown (X, catch-else-throw(P, Y)) handles those values thrown by X that match pattern P.
Other thrown values are re-thrown.

	Throwing

