
Funcons-beta: Binding ∗

The PLanCompS Project

Binding.cbs | PLAIN | PRETTY

OUTLINE

Binding

Environments

Current bindings

Scope

Recurse

Binding

[Type environments

Alias envs

Datatype identifiers

Alias ids

Funcon identifier-tagged

Alias id-tagged

Funcon fresh-identifier

Entity environment

Alias env

Funcon initialise-binding

Funcon bind-value

Alias bind

Funcon unbind

Funcon bound-directly

Funcon bound-value

Alias bound

Funcon closed

Funcon scope

Funcon accumulate

Funcon collateral

Funcon bind-recursively

Funcon recursive]

Meta-variables T <: values

∗Suggestions for improvement: plancomps@gmail.com.

Reports of issues: https://github.com/plancomps/CBS-beta/issues.

1

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Computations/Normal/Binding/Binding.cbs
/CBS-beta/docs/Funcons-beta/Computations/Normal/Binding/index.html
/CBS-beta/math/Funcons-beta/Computations/Normal/Binding/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

Environments

Type environments maps(identifiers, values?)

Alias envs = environments

An environment represents bindings of identifiers to values. Mapping an identifier to () represents

that its binding is hidden.

Circularity in environments (due to recursive bindings) is represented using bindings to cut-points

called links. Funcons are provided for making declarations recursive and for referring to bound values

without explicit mention of links, so their existence can generally be ignored.

Datatype identifiers ::= { : strings} | identifier-tagged(: identifiers, : values)

Alias ids = identifiers

Alias id-tagged = identifier-tagged

An identifier is either a string of characters, or an identifier tagged with some value (e.g., with the

identifier of a namespace).

Funcon fresh-identifier :⇒ identifiers

fresh-identifier computes an identifier distinct from all previously computed identifiers.

Rule fresh-identifier identifier-tagged(“generated”, fresh-atom)

Current bindings

Entity environment(: environments) ` −→

Alias env = environment

The environment entity allows a computation to refer to the current bindings of identifiers to values.

Funcon initialise-binding(X :⇒T) :⇒T
 initialise-linking(initialise-generating(closed(X)))

initialise-binding(X) ensures that X does not depend on non-local bindings. It also ensures that the

linking entity (used to represent potentially cyclic bindings) and the generating entity (for creating

fresh identifiers) are initialised.

Funcon bind-value(I : identifiers,V : values) :⇒ environments

 {I 7→ V }

Alias bind = bind-value

bind-value(I ,X) computes the environment that binds only I to the value computed by X .

Funcon unbind(I : identifiers) :⇒ environments

 {I 7→ ()}

unbind(I) computes the environment that hides the binding of I .

2

Funcon bound-directly(: identifiers) :⇒ values

bound-directly(I) returns the value to which I is currently bound, if any, and otherwise fails.

bound-directly(I) does not follow links. It is used only in connection with recursively-bound values

when references are not encapsulated in abstractions.

Rule
lookup(ρ, I) (V : values)

environment(ρ) ` bound-directly(I : identifiers) −→ V

Rule
lookup(ρ, I) ()

environment(ρ) ` bound-directly(I : identifiers) −→ fail

Funcon bound-value(I : identifiers) :⇒ values

 follow-if-link(bound-directly(I))

Alias bound = bound-value

bound-value(I) inspects the value to which I is currently bound, if any, and otherwise fails. If the

value is a link, bound-value(I) returns the value obtained by following the link, if any, and otherwise

fails. If the inspected value is not a link, bound-value(I) returns it.

bound-value(I) is used for references to non-recursive bindings and to recursively-bound values when

references are encapsulated in abstractions.

Scope

Funcon closed(X :⇒T) :⇒T

closed(X) ensures that X does not depend on non-local bindings.

Rule
environment(map()) ` X −→ X ′

environment() ` closed(X) −→ closed(X ′)

Rule closed(V : T) V

Funcon scope(: environments, :⇒T) :⇒T

scope(D,X) executes D with the current bindings, to compute an environment ρ representing local

bindings. It then executes X to compute the result, with the current bindings extended by ρ, which

may shadow or hide previous bindings.

closed(scope(ρ,X)) ensures that X can reference only the bindings provided by ρ.

Rule
environment(map-override(ρ1, ρ0)) ` X −→ X ′

environment(ρ0) ` scope(ρ1 : environments,X) −→ scope(ρ1,X
′)

Rule scope(: environments,V : T) V

Funcon accumulate(: (⇒ environments)*) :⇒ environments

accumulate(D1,D2) executes D1 with the current bindings, to compute an environment ρ1 repre-

senting some local bindings. It then executes D2 to compute an environment ρ2 representing further

local bindings, with the current bindings extended by ρ1, which may shadow or hide previous current

bindings. The result is ρ1 extended by ρ2, which may shadow or hide the bindings of ρ1.

accumulate(,) is associative, with map() as unit, and extends to any number of arguments.

3

Rule
D1 −→ D ′1

accumulate(D1,D2) −→ accumulate(D ′1,D2)

Rule accumulate(ρ1 : environments,D2) scope(ρ1,map-override(D2, ρ1))

Rule accumulate() map()

Rule accumulate(D1) D1

Rule accumulate(D1,D2,D
+) accumulate(D1, accumulate(D2,D

+))

Funcon collateral(ρ* : environments*) :⇒ environments

 checked map-unite(ρ*)

collateral(D1, · · ·) pre-evaluates its arguments with the current bindings, and unites the resulting

maps, which fails if the domains are not pairwise disjoint.

collateral(D1,D2) is associative and commutative with map() as unit, and extends to any number

of arguments.

Recurse

Funcon bind-recursively(I : identifiers,E :⇒ values) :⇒ environments

 recursive({I}, bind-value(I ,E))

bind-recursively(I ,E) binds I to a link that refers to the value of E , representing a recursive binding of

I to the value of E . Since bound-value(I) follows links, it should not be executed during the evaluation

of E .

Funcon recursive(SI : sets(identifiers),D :⇒ environments) :⇒ environments

 re-close(bind-to-forward-links(SI),D)

recursive(SI ,D) executes D with potential recursion on the bindings of the identifiers in the set SI

(which need not be the same as the set of identifiers bound by D).

Auxiliary Funcon re-close(M : maps(identifiers, links),D :⇒ environments) :⇒ environments

 accumulate(scope(M,D), sequential(set-forward-links(M),map()))

re-close(M,D) first executes D in the scope M, which maps identifiers to freshly allocated links. This

computes an environment ρ where the bound values may contain links, or implicit references to links

in abstraction values. It then sets the link for each identifier in the domain of M to refer to its bound

value in ρ, and returns ρ as the result.

Auxiliary Funcon bind-to-forward-links(SI : sets(identifiers)) :⇒maps(identifiers, links)

 map-unite(

interleave-map(

bind-value(given, fresh-link(values)),

set-elements(SI)))

bind-to-forward-links(SI) binds each identifier in the set SI to a freshly allocated link.

Auxiliary Funcon set-forward-links(M : maps(identifiers, links)) :⇒ null-type

 effect(

interleave-map(

set-link(map-lookup(M, given), bound-value(given)),

set-elements(map-domain(M))))

For each identifier I in the domain of M, set-forward-links(M) sets the link to which I is mapped by

M to the current bound value of I .

4

	Binding
	Environments
	Current bindings
	Scope
	Recurse

