Funcons-beta: Binding *

The PLanCompS Project

Binding.cbs| | PLAIN | PRETTY

OUTLINE

Recursd

Binding

[environments
envs
identifiers
ids
identifier-tagged
id-tagged
fresh-identifier
environment
env
initialise-binding
bind-value
bind
unbind
bound-directly
bound-value
bound
closed
scope
accumulate
collateral
bind-recursively

recursive]

T <: values

*Suggestions for improvement: plancomps@gmail . com.
Reports of issues: https://github.com/plancomps/CBS-beta/issues.

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Computations/Normal/Binding/Binding.cbs
/CBS-beta/docs/Funcons-beta/Computations/Normal/Binding/index.html
/CBS-beta/math/Funcons-beta/Computations/Normal/Binding/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

Environments

environments ~» maps(identifiers, values?)

envs = environments

An environment represents bindings of identifiers to values. Mapping an identifier to () represents
that its binding is hidden.

Circularity in environments (due to recursive bindings) is represented using bindings to cut-points
called links. Funcons are provided for making declarations recursive and for referring to bound values
without explicit mention of links, so their existence can generally be ignored.

identifiers ::= {_: strings} | identifier-tagged(_ : identifiers, _ : values)

ids = identifiers

id-tagged = identifier-tagged

An identifier is either a string of characters, or an identifier tagged with some value (e.g., with the
identifier of a namespace).

fresh-identifier : = identifiers

fresh-identifier computes an identifier distinct from all previously computed identifiers.

fresh-identifier ~» identifier-tagged(“generated”, fresh-atom)

Current bindings

environment(_ : environments) - _ — _

env = environment

The environment entity allows a computation to refer to the current bindings of identifiers to values.

initialise-binding(X : = T) : =T

~ initialise-linking(initialise-generating(closed(X)))

initialise-binding(X) ensures that X does not depend on non-local bindings. It also ensures that the
linking entity (used to represent potentially cyclic bindings) and the generating entity (for creating
fresh identifiers) are initialised.

bind-value(/ : identifiers, V' : values) : = environments
~ {l— V}

bind = bind-value

bind-value(/, X) computes the environment that binds only / to the value computed by X.

unbind(/ : identifiers) : = environments

~ =)}

unbind(/) computes the environment that hides the binding of /.

bound-directly(_ : identifiers) : = values

bound-directly(/) returns the value to which / is currently bound, if any, and otherwise fails.

bound-directly(/) does not follow links. It is used only in connection with recursively-bound values
when references are not encapsulated in abstractions.

lookup(p, 1) ~ (V : values)

environment(p) F bound-directly(/ : identifiers) — V/

lookup(p, /) ~ (')
environment(p) F bound-directly(/ : identifiers) — fail

bound-value(/ : identifiers) : = values
~ follow-if-link(bound-directly(/))

bound = bound-value

bound-value(/) inspects the value to which [is currently bound, if any, and otherwise fails. If the
value is a link, bound-value(/) returns the value obtained by following the link, if any, and otherwise
fails. If the inspected value is not a link, bound-value(/) returns it.

bound-value(/) is used for references to non-recursive bindings and to recursively-bound values when
references are encapsulated in abstractions.

Scope
closed(X :=T):=T

closed(X) ensures that X does not depend on non-local bindings.

environment(map()) F X — X’

environment(_) F closed(X) — closed(X")
closed(V : T) ~ V

scope(_: environments, _: = T) : =T

scope(D, X) executes D with the current bindings, to compute an environment p representing local
bindings. It then executes X to compute the result, with the current bindings extended by p, which
may shadow or hide previous bindings.

closed(scope(p, X)) ensures that X can reference only the bindings provided by p.

environment(map-override(po1, pg)) - X — X’

environment(po) I scope(p; : environments, X) — scope(p1, X')

scope(_ : environments, V : T) ~» V

accumulate(- : (= environments)*) : = environments

accumulate(Dy, D2) executes Dy with the current bindings, to compute an environment p; repre-
senting some local bindings. It then executes D, to compute an environment p, representing further
local bindings, with the current bindings extended by p;, which may shadow or hide previous current
bindings. The result is p; extended by p,, which may shadow or hide the bindings of p;.

accumulate(_, _) is associative, with map() as unit, and extends to any number of arguments.

D1—>D,1

accumulate(Dy, D) — accumulate(D}, D»)

accumulate(p; : environments, D5) ~ scope(p1, map-override(Da, p1))
accumulate() ~» map()
accumulate(D1) ~ Dy

accumulate(Dy, Dy, DV) ~» accumulate(D;, accumulate(Ds, D))

collateral(p* : environments*) : = environments
~ checked map-unite(p*)

collateral(Dy, - - -) pre-evaluates its arguments with the current bindings, and unites the resulting
maps, which fails if the domains are not pairwise disjoint.

collateral(D1, D5) is associative and commutative with map() as unit, and extends to any number
of arguments.

Recurse

bind-recursively(/ : identifiers, E : = values) : = environments
~ recursive({/}, bind-value(/, E))
bind-recursively(/, E) binds / to a link that refers to the value of E, representing a recursive binding of

I to the value of E. Since bound-value(/) follows links, it should not be executed during the evaluation
of E.

recursive(S/ : sets(identifiers), D : = environments) : = environments
~» re-close(bind-to-forward-links(S/), D)

recursive(S/, D) executes D with potential recursion on the bindings of the identifiers in the set S/
(which need not be the same as the set of identifiers bound by D).

re-close(M : maps(identifiers, links), D : = environments) : = environments

~+ accumulate(scope(M, D), sequential(set-forward-links(M), map()))
re-close(M, D) first executes D in the scope M, which maps identifiers to freshly allocated links. This
computes an environment p where the bound values may contain links, or implicit references to links

in abstraction values. It then sets the link for each identifier in the domain of M to refer to its bound
value in p, and returns p as the result.

bind-to-forward-links(S/ : sets(identifiers)) : = maps(identifiers, links)
~> map-unite(
interleave-map(
bind-value(given, fresh-link(values)),
set-elements(S/)))

bind-to-forward-links(S/) binds each identifier in the set S/ to a freshly allocated link.

set-forward-links(M : maps(identifiers, links)) : = null-type
~ effect(
interleave-map(
set-link(map-lookup(M, given), bound-value(given)),
set-elements(map-domain(M))))

For each identifier / in the domain of M, set-forward-links(M) sets the link to which / is mapped by
M to the current bound value of /.

	Binding
	Environments
	Current bindings
	Scope
	Recurse

