Funcons-beta: Classes *

The PLanCompS Project

Classes.cbs/ | PLAIN| | PRETTY

Classes

[classes
class
class-instantiator
class-feature-map
class-superclass-name-sequence
class-name-tree
is-subclass-name

class-name-single-inheritance-feature-map |

classes ::= class(_: thunks(references(objects)), _ : environments, _ : identifiers*)

class(Thunk, Env, C*) is a class with: * a thunk Thunk for instantiating the class, * an environment
Env with the features declared by the class, and * a sequence C* of names of direct superclasses.
class(Thunk, Env) is a base class, having no superclasses. class(Thunk, Env, C) is a class with a
single superclass.

Class instantiation forces its thunk to compute a reference to an object.

Features are inherited from superclasses. When features with the same name are declared in si-
multaneously inherited classes, the order of the superclass identifiers in C* may affect resolution of
references to features. Overloading of feature names is supported by using type maps as features.

The class table is represented by binding class names to classes. The class superclass hierarchy is
assumed to be acyclic.

class-instantiator(_ : classes) : = thunks(references(objects))
class-instantiator
class(Thunk : thunks(.), Envs : environments, C* : identifiers*) ~
Thunk

class-feature-map(_ : classes) : = environments

class-feature-map
class(Thunk : thunks(_), Env : environments, C* : identifiers*) ~
Env

*Suggestions for improvement: plancomps@gmail.com.
Reports of issues: https://github.com/plancomps/CBS-beta/issues|

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Values/Composite/Classes/Classes.cbs
/CBS-beta/docs/Funcons-beta/Values/Composite/Classes/index.html
/CBS-beta/math/Funcons-beta/Values/Composite/Classes/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

class-superclass-name-sequence(_ : classes) : = identifiers*
class-superclass-name-sequence
class(Thunk : thunks(_), Env : environments, C* : identifiers*) ~»
C*

class-name-tree(_ : identifiers) : = trees(identifiers)

class-name-tree C forms a tree where the branches are the class name trees for the superclasses of
C.

class-name-tree(C : identifiers) ~»
tree(
C,
interleave-map(
class-name-tree given,

class-superclass-name-sequence bound-value C))

is-subclass-name(C : identifiers, C' : identifiers) : = booleans

~ is-in-set(C, {forest-value-sequence class-name-tree C'})

The result of is-subclass-name(C, C”) does not depend on the order of the names in forest-value-sequence class-name-tree (

class-name-single-inheritance-feature-map(C : identifiers) : = environments
~» map-override interleave-map(
class-feature-map bound-value given,

single-branching-sequence class-name-tree C)

For multiple inheritance, different resolution orders can be specified by using different linearisations
of the class name tree.

	Classes

