Funcons-beta: Objects *

The PLanCompS Project

Objects.cbs | PLAIN| | PRETTY

Objects

[objects
object
object-identity
object-class-name
object-feature-map
object-subobject-sequence
object-tree

object-single-inheritance-feature-map |

objects ::= object(_: atoms, _: identifiers, _ : environments, _ : objects*)

object(A, C, Env, O*) is an object: * distinguished by an atom A, * of a class named C, * with an
environment Env with the features of the object, and * a sequence O* of subobjects of the direct
superclasses of C. object(A, C, Env) is an object of a base class. object(A, C, Env, O’) is an object
of a class with a single superclass. With multiple inheritance, subobjects due to repeated inheritance
of the same class may be shared.

Implementations of objects generally represent an object as a vector of fields, and use pointers and
offsets for efficient access to individual fields. The representation of objects used in this specification
is independent of such implementation concerns.

object-identity(_ : objects) : = atoms

object-identity
object(A : atoms, _ : identifiers, _ : environments, _* : objects*) ~~
A

object-class-name(_ : objects) : = identifiers

object-class-name
object(_: atoms, C : identifiers, _ : environments, _* : objects*) ~»
C

object-feature-map(_ : objects) : = environments

object-feature-map
object(_: atoms, _ : identifiers, Env : environments, _* : objects*) ~
Env

*Suggestions for improvement: plancomps@gmail. com.
Reports of issues: https://github.com/plancomps/CBS-beta/issues.

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Values/Composite/Objects/Objects.cbs
/CBS-beta/docs/Funcons-beta/Values/Composite/Objects/index.html
/CBS-beta/math/Funcons-beta/Values/Composite/Objects/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

object-subobject-sequence(_ : objects) : = objects*
object-subobject-sequence
object(_: atoms, _ : identifiers, _ : environments, O* : objects*) ~~
O*

object-tree(_ : objects) : = trees(objects)

object-tree O forms a tree where the branches are the object trees for the direct subobjects of O.

object-tree(O : objects) ~~
tree(
O,
interleave-map(
object-tree given,

object-subobject-sequence O))

object-single-inheritance-feature-map(O : objects) : = environments
~» map-override left-to-right-map(
object-feature-map given,

single-branching-sequence object-tree O)

For multiple inheritance, different resolution orders can be specified by using difference linearisations
of the object tree.

	Objects

