
Funcons-beta: Value-Types ∗

The PLanCompS Project

Value-Types.cbs | PLAIN | PRETTY

OUTLINE

Value Types

Values

Types

Option types

Ground values

Value Types

[Type values

Alias vals

Type value-types

Alias types

Type empty-type

Funcon is-in-type

Alias is

Funcon is-value

Alias is-val

Funcon when-true

Alias when

Type cast-to-type

Alias cast

Type ground-values

Alias ground-vals

Funcon is-equal

Alias is-eq]

Values

Built-in Type values

Alias vals = values

The type values includes all values provided by CBS.

Some funcons are declared as value constructors. Values are constructed by applying value constructor

funcons to the required arguments.

Values are immutable and context-independent. Their structure can be inspected using patterns

formed from value constructors and variables. Computations can be extracted from values and exe-

cuted, but the structure of computations cannot be inspected.

∗Suggestions for improvement: plancomps@gmail.com.

Reports of issues: https://github.com/plancomps/CBS-beta/issues.

1

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Funcons-beta/Values/Value-Types/Value-Types.cbs
/CBS-beta/docs/Funcons-beta/Values/Value-Types/index.html
/CBS-beta/math/Funcons-beta/Values/Value-Types/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

Some types of values and their funcons are declared as built-in, and not further specified in CBS. New

types of built-in values can be added to CBS by its developers.

New algebraic datatypes may be declared by users of CBS. Their values are disjoint from built-in

values.

Meta-variables T ,T 1,T 2 <: values

Types

Built-in Type value-types

Alias types = value-types

Built-in Type empty-type

A type T is a value that represents a set of values.

The values of type types are all the types, including types itself.

The formula V : T holds when V is a value of type T , i.e., V is in the set represented by the type

T .

The formula T 1 <: T 2 holds when T 1 is a subtype of T 2, i.e., the set represented by T 1 is a subset

of the set represented by T 2.

The set of types forms a Boolean algebra with the following operations and constants:

• T 1 & T 2 (meet/intersection)

• T 1 | T 2 (join/union)

• ∼T (complement)

• values (top)

• empty-type (bottom)

Subtyping: T 1 <: T 2 is the partial order defined by the algebra.

Subsumption: If V : T 1 and T 1 <: T 2 both hold, so does V : T 2.

Indivisibility: For each value V and type T , either V : T or V : ∼T holds.

Universality: V : values holds for all values V .

Emptiness: V : empty-type holds for no value V .

‘Type N’ declares the name ‘N’ to refer to a fresh value constructor and includes it as an element of

types.

‘Type N ∼> T’ moreover specifies ‘Rule N ∼> T’, so that ‘N’ can be used as an abbreviation for the

type term ‘T’.

‘Type N <: T’ declares the name ‘N’ to refer to a fresh value constructor in types, and asserts ‘N <:

T’.

Parametrised type declarations introduce generic (possibly dependent) types, i.e., families of individual

types, indexed by types (and by other values). For example, lists(T) is parameterised by the type of

list elements T . Replacing a parameter by denotes the union over all instances of that parameter,

e.g., lists() is the union of all types lists(T) with T : types.

Qualified variables V : T in terms range over values of type T . Qualified variables T 1 <: T 2 in terms

range over subtypes T 1 of T 2.

Funcon is-in-type(V : values,T : types) :⇒ booleans

Alias is = is-in-type

2

is-in-type(V ,T) tests whether V : T holds. The value V need not be a ground value, but T should

not require testing any computation types.

Rule
V : T

is-in-type(V : values,T : types) true

Rule
V : ∼T

is-in-type(V : values,T : types) false

Option types

For any value type T , the elements of the option type (T)? are the elements of T together with

the empty sequence (), which represents the absence of a value. Option types are a special case of

sequence types.

A funcon whose result type is an option type (T)? may compute a value of type T or the empty

sequence (); the latter represents undefined results of partial operations.

The parentheses in (T)? and () can be omitted when this does not give rise to grouoing ambiguity.

Note however that T ? is a meta-variable ranging over option types, whereas (T)? is the option type

for the value type T .

Funcon is-value(: values?) :⇒ booleans

Alias is-val = is-value

is-value(V ?) tests whether the optional value V ? is a value or absent.

Rule is-value(: values) true

Rule is-value() false

Funcon when-true(: booleans, : T) :⇒(T)?

Alias when = when-true

when-true(B,V) gives V when B is true, and () when B is false.

Rule when-true(true,V : values) V

Rule when-true(false,V : values) ()

Funcon cast-to-type(V : values,T : types) :⇒(T)?

Alias cast = cast-to-type

cast-to-type(V ,T) gives V if it is in T , otherwise ().

Rule
V : T

cast-to-type(V : values,T : types) V

Rule
V : ∼T

cast-to-type(V : values,T : types) ()

Ground values

Built-in Type ground-values

Alias ground-vals = ground-values

3

The elements of ground-values are all values that are formed entirely from value-constructors, and

thus do not involve computations.

A type is a subtype of ground-values if and only if all its elements are included in ground-values.

Funcon is-equal(V : values,W : values) :⇒ booleans

Alias is-eq = is-equal

is-equal(V ,W) returns true when V and W are identical ground values, otherwise false.

Rule
V ==W

is-equal(V : ground-values,W : ground-values) true

Rule
V 6=W

is-equal(V : ground-values,W : ground-values) false

Rule is-equal(V : ∼ ground-values,W : values) false

Rule is-equal(V : values,W : ∼ ground-values) false

4

	Value Types
	Values
	Types
	Option types
	Ground values

