
Unstable-Funcons-beta: Multithreading ∗

The PLanCompS Project

Multithreading.cbs | PLAIN | PRETTY

OUTLINE

Multithreading

Initialisation

Activation

Execution

Termination

Scheduling

Entities

Initialisation

Activation

Execution

Termination

Scheduling

Multithreading

[ Datatype thread-ids

Datatype threads

Funcon thread-joinable

Funcon thread-detached ]

Initialisation

[ Funcon initialise-multithreading ]

Activation

[ Funcon multithread

Funcon thread-activate

Funcon thread-detach ]

Execution

[ Funcon current-thread

Funcon thread-atomic

Funcon thread-yield

Funcon thread-spin

Funcon thread-suspend

Funcon thread-resume ]

∗Suggestions for improvement: plancomps@gmail.com.

Reports of issues: https://github.com/plancomps/CBS-beta/issues.

1

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Unstable-Funcons-beta/Computations/Threads/Multithreading/Multithreading.cbs
/CBS-beta/docs/Unstable-Funcons-beta/Computations/Threads/Multithreading/index.html
/CBS-beta/math/Unstable-Funcons-beta/Computations/Threads/Multithreading/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues


Termination

[ Funcon thread-terminate

Funcon is-thread-terminated

Funcon thread-value

Funcon thread-join

Funcon thread-exterminate ]

Scheduling

[ Funcon update-thread-stepping

Funcon update-thread-schedule

Funcon current-thread-schedule

Funcon is-thread-preemptible

Funcon thread-preemptible

Funcon thread-cooperative ]

A thread consists of code that can be executed concurrently with code of other threads. The progress

of the execution of the threads may be determined cooperatively by threads themselves, or by a

preemptive scheduler (or by both).

Threads can be activated by the initial program or by other threads, and share access to the same

entities (in contrast to processes). Synchronisation between threads can avoid interference (e.g., data

races) arising from concurrent shared access. Synchronisation can also ensure sequential consistency

of threads, where any concurrent execution corresponds to some (possibly unfair) interleaving of their

separate execution steps. Synchronisation can be achieved by various kinds of locks and notifications.

A thread is a value containing a thunk. When a thread has been activated, execution of the body of

the thunk can be interleaved with that of other activated threads, possibly subject to scheduling and

synchronisation.

Activation of a thread generates a fresh thread-id for referring to it:

Auxiliary Datatype thread-ids ::= thread-id( : atoms)

A thread is called joinable when other threads can wait for its termination. A joinable thread contains

a list of the threads that are currently waiting to join it. A non-joinable thread is called detached:

Auxiliary Datatype threads ::= thread( : thunks(values), : (lists thread-ids)?)

Funcon thread-joinable(TH : thunks(values)) :⇒ threads

 thread(TH, [ ])

Funcon thread-detached(TH : thunks(values)) :⇒ threads

 thread(TH)

In names of funcons and entities, and in informal explanations, a reference to a ‘thread’ generally

concerns a thread-id, rather than a value of type threads. The only funcons that compute threads are

thread-joinable(TH) and thread-detached(TH); thread-activate(THR) is the only funcon that takes

an argument of type threads.

The thunk contained in a thread can be formed directly from a computation X by thunk closure X .

Alternatively, supply(F ,V ) forms a thunk by supplying an argument value V to a function F without

executing F (in contrast to apply(F ,V ), which forces the evaluation of the body of F ).

The current state of a thread is either active, suspended, terminated, or deleted.

• Activation makes a thread active.

2



• An active thread can be suspended, and subsequently resumed.

• An active or suspended thread can be terminated.

• A thread can be deleted.

The following mutable entities represent the states of all activated threads.

Entities The thread-map contains all active and suspended threads:

Entity 〈 , thread-map( : maps(thread-ids, threads))〉 −→
〈 , thread-map( : maps(thread-ids, threads))〉

The active-thread-set distinguishes between active and suspended threads:

Entity 〈 , active-thread-set( : sets(thread-ids))〉 −→
〈 , active-thread-set( : sets(thread-ids))〉

Funcon is-some-thread-active :⇒ booleans

Rule 〈is-some-thread-active, active-thread-set(ATS)〉 −→
not is-equal(ATS , { })

Funcon is-some-thread-suspended :⇒ booleans

Rule 〈is-some-thread-suspended, active-thread-set(ATS), thread-map(TM)〉 −→
not is-equal(ATS , dom TM)

The thread-stepping entity identifies the thread whose step is currently being executed. When defined,

it identifies an active thread:

Entity 〈 , thread-stepping( : thread-ids?)〉 −→
〈 , thread-stepping( : thread-ids?)〉

The terminated-thread-map contains the values computed by terminated joinable threads:

Entity 〈 , terminated-thread-map( : maps(thread-ids, values))〉 −→
〈 , terminated-thread-map( : maps(thread-ids, values))〉

Deleted threads are not contained in any of the above entities. Terminated detached threads are

always deleted.

Scheduling information for each thread may affect the interleaving of thread steps:

Entity 〈 , thread-schedule( : sets(ground-values))〉 −→
〈 , thread-schedule( : sets(ground-values))〉

Scheduling can change dynamically between preemptive and cooperative.

Initialisation The entities used to model multithreading need initialising:

Funcon initialise-multithreading :⇒ null-type

 sequential(

initialise-thread-map,

initialise-active-thread-set,

initialise-thread-stepping,

initialise-terminated-thread-map,

initialise-thread-schedule)

3



The initial values are generally quite obvious:

Auxiliary Funcon initialise-thread-map :⇒ null-type

Rule initialise-thread-map −→
〈null-value, thread-map(map( ))〉

Auxiliary Funcon initialise-active-thread-set :⇒ null-type

Rule initialise-active-thread-set −→
〈null-value, active-thread-set{ }〉

Auxiliary Funcon initialise-thread-stepping :⇒ null-type

Rule initialise-thread-stepping −→
〈null-value, thread-stepping( )〉

Auxiliary Funcon initialise-terminated-thread-map :⇒ null-type

Rule initialise-terminated-thread-map −→
〈null-value, terminated-thread-map(map( ))〉

Auxiliary Funcon initialise-thread-schedule :⇒ null-type

Rule initialise-thread-schedule −→
〈null-value, thread-schedule{ }〉

Activation Multithreading can start by activating a single thread, which can then activate further

threads:

Funcon multithread( :⇒ values) :⇒ values

multithread X forms a joinable thread from thunk closure X and activates it. On normal termination

of all threads, it gives the value computed by X . On abrupt termination (caused by a thread step, or

by the failure of the check that all threads have terminated) the reason for it:

Rule multithread X  

sequential(

initialise-multithreading,

give(

thread-activate thread-joinable thunk closure X ,

handle-abrupt(

sequential(

while-true(

is-some-thread-active,

sequential(update-thread-stepping, thread-step)),

check not is-some-thread-suspended,

thread-value given),

given)))

4



The update-thread-stepping funcon determines the thread-id for the next step, which may depend on

whether the previous step has yielded, on its preemptibility, and on the current scheduling.

A thread can activate the execution of thread-activates:

Funcon thread-activate( : threads) :⇒ thread-ids

When a thread is activated, a fresh thread-id is generated, and the thread is included in the thread-map

and the active-thread-set:

Rule

thread-id(fresh-atom) −→ TI
map-unite({TI 7→ THR},TM) TM ′

set-unite({TI},ATS) ATS ′

〈thread-activate(THR : threads), thread-map(TM), active-thread-set(ATS)〉 −→
〈TI , thread-map(TM ′), active-thread-set(ATS ′)〉

A joinable thread can be detached after its activation, discarding its list of joining threads:

Funcon thread-detach( : thread-ids) :⇒ null-type

When the thread has not yet terminated, it remains in the thread-map:

Rule

map-lookup(TM,TI ) thread(TH, )

map-override({TI 7→ thread(TH)},TM) TM ′

〈thread-detach(TI : thread-ids), thread-map(TM)〉 −→
〈null-value, thread-map(TM ′)〉

When the thread has already terminated, detaching it deletes it from the terminated-thread-map:

Rule

is-in-set(TI , dom TMV ) == (true)

map-delete(TMV , {TI}) TMV ′

〈thread-detach(TI : thread-ids), terminated-thread-map(TMV )〉 −→
〈null-value, terminated-thread-map(TMV ′)〉

(A funcon for making a detached thread joinable could be defined similarly.)

Execution The thread-stepping is undefined only before multithreading starts, and when all non-

terminated threads are suspended.

Funcon current-thread :⇒ thread-ids

Rule 〈current-thread, thread-stepping(TI )〉 −→ TI

current-thread is only intended for use in threads:

Rule 〈current-thread, thread-stepping( )〉 −→ fail

Stepping The funcon thread-step executes a single step of the thread identified by thread-stepping:

Auxiliary Funcon thread-step :⇒ null-type

5



Whenever THR executes a step and THR ′ represents the remaining steps, the thread-map is updated

to map TI to THR ′.

If the body of the thread can make a step, so can thread-step:

Rule

lookup(TM,TI ) thread(thunk abstraction(X ),L?)

〈X , thread-stepping(TI ), thread-map(TM)〉 −→
〈X ′, thread-stepping(TI ?), thread-map(TM ′)〉

if-true-else(

is-in-set(TI , dom TM ′),

map-override({TI 7→ thread(thunk abstraction(X ′),L?)},TM ′),
TM ′) 

TM ′′

〈thread-step, thread-stepping(TI ), thread-map(TM)〉 −→
〈null-value, thread-stepping(TI ?), thread-map(TM ′′)〉

The only other case for a next step is when a thread has terminated normally, and is to be removed

from the executing thread map.

If it is detached, its computed value is discarded:

Rule

lookup(TM,TI ) thread(thunk abstraction(X ))

X  (V : values)

map-delete(TM, {TI}) TM ′

set-difference(ATS , {TI}) ATS ′

〈thread-step, active-thread-set(ATS), thread-stepping(TI ), thread-map(TM)〉 −→
〈null-value, active-thread-set(ATS ′), thread-stepping( ), thread-map(TM ′)〉

If the thread is joinable, all its joining threads are resumed, and its computed value is made available

in the terminated-thread-map:

Rule

lookup(TM,TI ) thread(thunk abstraction(X ), [TI *])

X  (V : values)

map-delete(TM, {TI}) TM ′

set-unite(set-difference(ATS , {TI}), {TI *}) ATS ′

map-unite(TVM, {TI 7→ V }) TVM ′

〈thread-step, active-thread-set(ATS), thread-stepping(TI ),

thread-map(TM), terminated-thread-map(TVM)〉 −→
〈null-value, active-thread-set(ATS ′), thread-stepping( ),

thread-map(TM ′), terminated-thread-map(TVM ′)〉

Sync atomicity thread-atomic(X ) computes X in a single transition. Assuming that the potentially

interfering effects of X may only be updates on the store, thread suspension and/or resumption, and

abrupt termination, and that X always terminates, the outcome of thread-atomic(X ) is the same as

that of computing X without preemption.

(The funcon atomic(X ) generalises thread-atomic(X ) to allow X with arbitrary effects. When the

CBS notation “—>1 ; —>2” for composing transitions has been implemented by the interpreter

generation tools, uses of thread-atomic(X ) are to be replaced by atomic(X ).)

Auxiliary Funcon thread-atomic( :⇒ values) :⇒ values

6



Rule

〈X , store(σ), active-thread-set(ATS), thread-stepping(TI )〉 abrupted( )−−−−−−→
〈X ′, store(σ′), active-thread-set(ATS ′), thread-stepping(TI ′)〉

〈thread-atomic(X ′), store(σ′), active-thread-set(ATS ′), thread-stepping(TI ′)〉 abrupted( )−−−−−−→
〈V , store(σ′′), active-thread-set(ATS ′′), thread-stepping(TI ′′?)〉

〈thread-atomic(X ), store(σ), active-thread-set(ATS), thread-stepping(TI )〉 abrupted( )−−−−−−→
〈V , store(σ′′), active-thread-set(ATS ′′), thread-stepping(TI ′′?)〉

Rule

〈X , store(σ), active-thread-set(ATS), thread-stepping(TI )〉 abrupted( )−−−−−−→
〈X ′, store(σ′), active-thread-set(ATS ′), thread-stepping(TI ′)〉

〈thread-atomic(X ′), store(σ′), active-thread-set(ATS ′), thread-stepping(TI ′)〉 abrupted(A)−−−−−−−→
〈V , store(σ′′), active-thread-set(ATS ′′), thread-stepping(TI ′′?)〉

〈thread-atomic(X ), store(σ), active-thread-set(ATS), thread-stepping(TI )〉 abrupted(A)−−−−−−−→
〈V , store(σ′′), active-thread-set(ATS ′′), thread-stepping(TI ′′?)〉

Rule
X
abrupted(A)−−−−−−−→ X ′

thread-atomic(X )
abrupted(A)−−−−−−−→ thread-atomic(X ′)

Rule
X
abrupted( )−−−−−−→ (V : values)

thread-atomic(X )
abrupted( )−−−−−−→ V

Rule
X
abrupted(A)−−−−−−−→ (V : values)

thread-atomic(X )
abrupted(A)−−−−−−−→ thread-atomic(V )

Rule thread-atomic(V : values) −→ V

Note that if the execution of thread-atomic(X ) involves thread-yield( ) or thread-suspend( ), this

makes thread-stepping undefined, so it has to be the final step of X .

Yielding A thread can yield execution:

Funcon thread-yield( : thread-ids?) :⇒ null-type

When the argument thread-id is omitted, the next thread to be executed is left undefined, to be

determined by the scheduler:

Rule thread-yield( ) −→
〈null-value, thread-stepping( )〉

When the argument thread-id is TI , it has to be an active thread:

Rule
is-in-set(TI ,ATS) == (true)

〈thread-yield(TI : thread-ids), active-thread-set(ATS)〉 −→
〈null-value, thread-stepping(TI )〉

Rule
is-in-set(TI ,ATS) == (false)

〈thread-yield(TI : thread-ids), active-thread-set(ATS)〉 −→
fail

thread-spin(X ) repeatedly executes X while it fails, allowing interleaving with other threads.

Funcon thread-spin(X :⇒ values) :⇒ values

 else(

X ,

sequential(thread-yield( ), thread-spin(X )))

7



Suspension and resumption A thread may suspend one or more threads that are currently being

executed:

Funcon thread-suspend( : thread-ids+) :⇒ null-type

Rule

is-in-set(TI , {TI+}) == (false)

is-subset({TI+},ATS) == (true)

set-difference(ATS , {TI+}) ATS ′

〈thread-suspend(TI+ : thread-ids+), thread-stepping(TI ), active-thread-set(ATS)〉 −→
〈null-value, thread-stepping(TI ), active-thread-set(ATS ′)〉

If TI+ includes the current thread, suspension is accompanied by yielding:

Rule

is-in-set(TI , {TI+}) == (true)

is-subset({TI+},ATS) == (true)

set-difference(ATS , {TI+}) ATS ′

〈thread-suspend(TI+ : thread-ids+), thread-stepping(TI ), active-thread-set(ATS)〉 −→
〈null-value, thread-stepping( ), active-thread-set(ATS ′)〉

(Deadlock occurs if the last non-suspended thread suspends itself.)

A thread may resume any number of suspended threads:

Funcon thread-resume( : thread-ids*) :⇒ null-type

Rule

is-in-set(TI , {TI *}) == (false)

set-intersect(ATS , {TI *}) == { }
set-unite(ATS , {TI *}) ATS ′

〈thread-resume(TI * : thread-ids*), thread-stepping(TI ), active-thread-set(ATS)〉 −→
〈null-value, thread-stepping(TI ), active-thread-set(ATS ′)〉

Termination If the thread-map becomes empty, and there are no suspended threads, the entire

multithread computation terminates normally. If it becomes empty while suspended threads remain

to be executed, this is regarded as deadlock, and the computation fails.

If the execution of an individual thread terminates normally, the body of its thunk gives its com-

puted value. The thread is removed from the thread-map, and the computed value is added to the

terminated-thread-map.

Abrupt termination of a thread body causes immediate abrupt termination of the entire multithread

computation. This can be avoided by wrapping the bodies of all threads in appropriate handlers for

abrupt termination.

A thread can terminate itself or another thread, optionally specifying its computed value:

Funcon thread-terminate( : thread-ids, : values?) :⇒ null-type

When the thread is detached, no value is specified:

Rule

lookup(TM,TI ′) thread(thunk abstraction X )

map-delete(TM, {TI ′}) TM ′

set-difference(ATS , {TI ′}) ATS ′

when-true(not is-equal(TI ,TI ′),TI ) TI ?

〈thread-terminate(TI ′ : thread-ids), thread-stepping(TI ),

thread-map(TM), active-thread-set(ATS)〉 −→
〈null-value, thread-stepping(TI ?),

thread-map(TM ′), active-thread-set(ATS ′)〉

8



When the thread is joinable, its value has to be specified:

Rule

lookup(TM,TI ′) thread((thunk abstraction X ), [TI *])

map-delete(TM, {TI ′}) TM ′

set-unite(set-difference(ATS , {TI ′}), {TI *}) ATS ′

map-unite(TVM, {TI ′ 7→ V }) TVM ′

when-true(not is-equal(TI ,TI ′),TI ) TI ?

〈thread-terminate(TI ′ : thread-ids,V : values), thread-stepping(TI ),

thread-map(TM), terminated-thread-map(TVM), active-thread-set(ATS)〉 −→
〈null-value, thread-stepping(TI ?),

thread-map(TM ′), terminated-thread-map(TVM ′), active-thread-set(ATS ′)〉

A thread can test whether a joinable thread has terminated:

Funcon is-thread-terminated( : thread-ids) :⇒ booleans

Rule 〈is-thread-terminated(TI : thread-ids), terminated-thread-map(TVM)〉 −→
is-value(map-lookup(TVM,TI ))

If so, it can get the computed value:

Funcon thread-value( : thread-ids) :⇒ values

Rule 〈thread-value(TI : thread-ids), terminated-thread-map(TVM)〉 −→
checked map-lookup(TVM,TI )

Joining a thread may cause suspension:

Funcon thread-join( : thread-ids) :⇒ null-type

Rule

lookup(TM,TI ′) thread(TH, [TI *])

map-override({TI ′ 7→ thread(TH, [TI *,TI ])},TM) TM ′

set-difference(ATS , {TI}) ATS ′

〈thread-join(TI ′ : thread-ids), thread-map(TM), thread-stepping(TI ),

active-thread-set(ATS)〉 −→
〈null-value, thread-map(TM ′),

thread-stepping( ), active-thread-set(ATS ′)〉

If a joinable thread has already terminated, the terminated-thread-map holds its value:

Rule
is-value(lookup(TVM,TI ′)) == true

〈thread-join(TI ′ : thread-ids), terminated-thread-map(TVM)〉 −→
null-value

Trying to join a detached thread fails:

Rule
lookup(TM,TI ′) thread(TH)

〈thread-join(TI ′ : thread-ids), thread-map(TM)〉 −→
fail

Rule

lookup(TM,TI ′) == ( )

lookup(TVM,TI ′) == ( )

〈thread-join(TI ′ : thread-ids), thread-map(TM), terminated-thread-map(TVM)〉 −→
fail

9



Extermination of a thread both terminates it and prevents its subsequent inspection.

Funcon thread-exterminate( : thread-ids) :⇒ null-type

Rule

TI ′ 6= TI
map-delete(TM, {TI ′}) TM ′

map-delete(TVM, {TI ′}) TVM ′

set-difference(ATS , {TI ′}) ATS ′

〈thread-exterminate(TI ′ : thread-ids), thread-map(TM), thread-stepping(TI ),

terminated-thread-map(TVM), active-thread-set(ATS)〉 −→
〈null-value, thread-map(TM ′), thread-stepping(TI ),

terminated-thread-map(TVM ′), active-thread-set(ATS ′)〉

Scheduling A scheduler determines the interleaving of thread execution, based on mutable infor-

mation regarding features such as preemptibility, priority, and time-sharing.

The next thread scheduled for execution is an active thread, or undefined when there are no active

threads. It may be the same thread that last made a step.

(The following definitions allow update-thread-stepping to update thread-stepping to any valid thread.

They are to be replaced by declarations of built-in funcons, allowing exploration of different interleav-

ings using oracles.)

Funcon update-thread-stepping :⇒ null-type

When thread-stepping is TI and that thread is not preemptible, update-thread-stepping has no effect:

Rule
is-thread-preemptible(TI ) −→ false

〈update-thread-stepping, thread-stepping(TI )〉 −→ null-value

When thread-stepping is TI and that thread is preemptible, or when thread-stepping is undefined,

update-thread-stepping may set it to any active TI ′:

Rule

is-thread-preemptible(TI ) −→ (true)

some-element(ATS) TI ′

〈update-thread-stepping, thread-stepping(TI ), active-thread-set(ATS)〉 −→
〈null-value, thread-stepping(TI ′)〉

Rule
some-element(ATS) TI ′

〈update-thread-stepping, thread-stepping( ), active-thread-set(ATS)〉 −→
〈null-value, thread-stepping(TI ′)〉

When there are no active threads, update-thread-stepping ensures that thread-stepping is undefined:

Rule 〈update-thread-stepping, thread-stepping(TI ?), active-thread-set{ }〉 −→
〈null-value, thread-stepping( )〉

Scheduling information for each thread can be inspected and updated:

Funcon update-thread-schedule( : sets(ground-values)) :⇒ null-type

Rule update-thread-schedule(VS : sets(ground-values)) −→
〈null-value, thread-schedule(VS)〉

10



Funcon current-thread-schedule :⇒ sets(ground-values)

Rule 〈current-thread-schedule, thread-schedule(VS)〉 −→ VS

Datatype thread-preemtibilities ::= thread-preemptible | thread-cooperative

Funcon is-thread-preemptible( : thread-ids) :⇒ booleans

 not is-in-set(thread-cooperative, current-thread-schedule)

For now, all threads are preemptible unless the scheduling includes cooperative.

The representation of scheduling information is left open here, together with the details of how it

affects the result of update-thread-stepping.

11


	Multithreading
	Initialisation
	Activation
	Execution
	Termination
	Scheduling
	Entities
	Initialisation
	Activation
	Execution
	Termination
	Scheduling


