
Unstable-Funcons-beta: Locks ∗

The PLanCompS Project

Locks.cbs | PLAIN | PRETTY

OUTLINE

Locks

Locks

[Funcon is-exclusive-lock-holder

Spin locks

Funcon spin-lock-create

Funcon spin-lock-sync

Funcon spin-lock-release

Exclusive locks

Funcon exclusive-lock-create

Funcon exclusive-lock-sync

Funcon exclusive-lock-sync-else-wait

Funcon exclusive-lock-release

Reentrant locks

Funcon reentrant-lock-create

Funcon reentrant-lock-sync

Funcon reentrant-lock-sync-else-wait

Funcon reentrant-lock-release

Funcon reentrant-lock-exit

Semaphores

Funcon semaphore-create

Funcon semaphore-sync

Funcon semaphore-sync-else-wait

Funcon semaphore-release

Shared-exclusive locks

Funcon rw-lock-create

Funcon rw-lock-sync-exclusive

Funcon rw-lock-sync-shared

Funcon rw-lock-sync-exclusive-else-wait

Funcon rw-lock-sync-shared-else-wait

Funcon rw-lock-release-exclusive

Funcon rw-lock-release-shared]

A thread may request locks, and release locks (held by itself or by another thread). A reentrant lock

may be held more than once by the same thread. A shared lock may be held by multiple threads at

∗Suggestions for improvement: plancomps@gmail.com.

Reports of issues: https://github.com/plancomps/CBS-beta/issues.

1

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Unstable-Funcons-beta/Computations/Threads/Synchronising/Locks/Locks.cbs
/CBS-beta/docs/Unstable-Funcons-beta/Computations/Threads/Synchronising/Locks/index.html
/CBS-beta/math/Unstable-Funcons-beta/Computations/Threads/Synchronising/Locks/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

the same time, whereas an exclusive lock can be held by only one thread at the same time. A request

for a spinlock that is held by another thread involves busy waiting instead of suspension, and assumes

interleaving of the execution of a waiting thread and the holding thread.

Funcon is-exclusive-lock-holder(SY : syncs) :⇒ booleans

 is-equal(current-thread, assigned sync-feature(SY , sync-holder))

Spin locks Spin locks support mutual exclusion, but not suspension of blocked requests. thread-spin spin-lock-sync SY

repeatedly executes the request for the lock until the request is granted, which is called busy waiting.

Interleaving of different threads waiting for the same spin lock may result in granting requests out of

order.

Funcon spin-lock-create :⇒ syncs

 sync-create(

sync-feature-create sync-held,

sync-feature-create sync-holder)

When the lock is not currently held, granting a request for it sets the holder to the current thread;

otherwise the request fails.

Funcon spin-lock-sync(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true not(assigned sync-feature(SY , sync-held)),

assign(sync-feature(SY , sync-held), true),

assign(sync-feature(SY , sync-holder), current-thread))

Releasing the lock leaves the lock free. Only the thread that holds the lock can release it. Releasing

cannot be blocked by other threads, so it is not a request.

Funcon spin-lock-release(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true is-exclusive-lock-holder(SY),

assign(sync-feature(SY , sync-held), false),

un-assign(sync-feature(SY , sync-holder)))

Exclusive locks Exclusive locks support mutual exclusion and suspension of blocked requests. An

exclusive lock – also called a mutex – can be held by only one thread at the same time. It can be

used to ensure mutual exclusion of so-called critical regions of thread bodies, and to avoid potential

interference due to thread interleaving.

Funcon exclusive-lock-create :⇒ syncs

 sync-create(

sync-feature-create sync-waiting-list,

sync-feature-create sync-held,

sync-feature-create sync-holder)

When the lock is not currently held, granting a request for it sets the holder to the current thread;

otherwise the request fails.

2

Funcon exclusive-lock-sync(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true not(assigned sync-feature(SY , sync-held)),

assign(sync-feature(SY , sync-held), true),

assign(sync-feature(SY , sync-holder), current-thread))

When the request fails, the current thread is added to the waiting list, and suspended until the request

can be granted:

Funcon exclusive-lock-sync-else-wait(SY : syncs) :⇒ null-type

 thread-atomic else(

exclusive-lock-sync(SY),

sequential(

sync-waiting-list-add(SY , current-thread),

thread-suspend current-thread))

When the waiting list is non-empty, releasing the lock grants it to the thread that made the first

request in the list, and resumes that thread; otherwise it leaves the lock free. Only the thread that

holds the lock can release it. Releasing a lock cannot be blocked by other threads, so it is not a

request.

Funcon exclusive-lock-release(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true is-exclusive-lock-holder(SY),

if-true-else(

is-equal(assigned sync-feature(SY , sync-waiting-list), []),

sequential(

assign(sync-feature(SY , sync-held), false),

un-assign(sync-feature(SY , sync-holder))),

give(

sync-waiting-list-head-remove(SY),

sequential(

assign(sync-feature(SY , sync-holder), given),

thread-resume given))))

Rentrant locks Reentrant exclusive locks support mutual exclusion, suspension of blocked requests,

and reentry. A reentrant exclusive lock can be held (and subsequently released) multiple times by the

same thread.

Funcon reentrant-lock-create :⇒ syncs

 sync-create(

sync-feature-create sync-waiting-list,

sync-feature-create sync-held,

sync-feature-create sync-holder,

sync-feature-create sync-count)

When the lock is not currently held, granting a request for it sets the holder to the current thread; if

it is already held by the current thread, it merely increments the counter; otherwise the request fails.

3

Funcon reentrant-lock-sync(SY : syncs) :⇒ null-type

 thread-atomic else(

sequential(

check-true not(assigned sync-feature(SY , sync-held)),

assign(sync-feature(SY , sync-held), true),

assign(sync-feature(SY , sync-holder), current-thread),

assign(sync-feature(SY , sync-count), 0)),

sequential(

check-true assigned sync-feature(SY , sync-held),

check-true is-exclusive-lock-holder(SY),

assign(

sync-feature(SY , sync-count),

nat-succ assigned sync-feature(SY , sync-count))))

When the request fails, the current thread is added to the waiting list, and suspended until the request

can be granted:

Funcon reentrant-lock-sync-else-wait(SY : syncs) :⇒ null-type

 thread-atomic else(

reentrant-lock-sync(SY),

sequential(

sync-waiting-list-add(SY , current-thread),

thread-suspend current-thread))

When the waiting list is non-empty, releasing the lock grants it to the thread that made the first

request in the list, and resumes that thread; otherwise it leaves the lock free. Only the thread that

holds the lock can release it. Releasing a lock cannot be blocked by other threads, so it is not a

request.

Funcon reentrant-lock-release(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true is-exclusive-lock-holder(SY),

if-true-else(

is-equal(assigned sync-feature(SY , sync-waiting-list), []),

sequential(

assign(sync-feature(SY , sync-held), false),

un-assign(sync-feature(SY , sync-holder)),

assign(sync-feature(SY , sync-count), 0)),

give(

sync-waiting-list-head-remove(SY),

sequential(

assign(sync-feature(SY , sync-holder), given),

assign(sync-feature(SY , sync-count), 0),

thread-resume given))))

When the reentered count is positive, an exit merely decrements it. Otherwise it is 0, and the exit

releases the lock.

4

Funcon reentrant-lock-exit(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true is-exclusive-lock-holder(SY),

give(

sync-feature(SY , sync-count),

if-true-else(

is-greater(assigned given, 0),

assign(given, checked nat-pred assigned given),

reentrant-lock-release(SY))))

Semaphores A semaphore is a shared lock with a specified limit on the number of threads that can

hold it at the same time. A semaphore can be released by any thread.

Funcon semaphore-create(N : pos-ints) :⇒ syncs

 give(

sync-create(

sync-feature-create sync-waiting-list,

sync-feature-create sync-count),

sequential(

assign(sync-feature(given, sync-count),N),

given))

When the semaphore is available, granting a request for it decrements the number of further threads

that can hold it; otherwise the request fails.

Funcon semaphore-sync(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true is-greater(assigned sync-feature(SY , sync-count), 0),

assign(

sync-feature(SY , sync-count),

checked nat-pred assigned sync-feature(SY , sync-count)))

When the request fails, the current thread is added to the waiting list, and suspended until the request

can be granted:

Funcon semaphore-sync-else-wait(SY : syncs) :⇒ null-type

 thread-atomic else(

semaphore-sync(SY),

sequential(

sync-waiting-list-add(SY , current-thread),

thread-suspend current-thread))

When the waiting list is empty, releasing the semaphore increments the counter; otherwise it grants

the semaphore to the thread that made the first request in the list, and resumes that thread. Releasing

a semaphore cannot be blocked, so it is not a request.

5

http://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf

Funcon semaphore-release(SY : syncs) :⇒ null-type

 thread-atomic

if-true-else(

is-equal(assigned sync-feature(SY , sync-waiting-list), []),

assign(

sync-feature(SY , sync-count),

nat-succ assigned sync-feature(SY , sync-count)),

give(

sync-waiting-list-head-remove(SY),

thread-resume given))

Shared-exclusive locks A shared-exclusive lock – also called a readers-writer (rw) lock – can be

held exclusively by a single thread, or shared by any number of threads at the same time. It can be

released by any thread.

Funcon rw-lock-create :⇒ syncs

 give(

sync-create(

sync-feature-create sync-waiting-list,

sync-feature-create sync-held,

sync-feature-create sync-count),

sequential(

assign(sync-feature(given, sync-count), 0),

given))

When the lock is not currently held at all, it can be granted exclusively:

Funcon rw-lock-sync-exclusive(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true and(

not(assigned sync-feature(SY , sync-held)),

is-equal(assigned sync-feature(SY , sync-count), 0)),

assign(sync-feature(SY , sync-held), true))

When the lock is not currently held exclusively, a request to share it is always granted immediately

(regardless of any waiting exclusive requests):

Funcon rw-lock-sync-shared(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true not(assigned sync-feature(SY , sync-held)),

assign(

sync-feature(SY , sync-count),

nat-succ assigned sync-feature(SY , sync-count)))

If the request fails, the current thread is added to the waiting list, and suspended until the request

can be granted.

The waiting list of a shared-exclusive lock records not only the thread but also whether the request

is for sharing:

6

http://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf

Funcon rw-lock-sync-exclusive-else-wait(SY : syncs) :⇒ null-type

 thread-atomic else(

rw-lock-sync-exclusive(SY),

sequential(

sync-waiting-list-add(SY , tuple(current-thread, false)),

thread-suspend current-thread))

Funcon rw-lock-sync-shared-else-wait(SY : syncs) :⇒ null-type

 thread-atomic else(

rw-lock-sync-shared(SY),

sequential(

sync-waiting-list-add(SY , tuple(current-thread, true)),

thread-suspend current-thread))

When the waiting list is non-empty, releasing the lock may grant either the first waiting exclusive

request, or all waiting shared requests. A scheduler may defer granting one kind of request when

there are waiting requests of the other kind, irrespective of the order in which those requests were

made. Releasing a lock cannot be blocked by other threads, so it is not a request.

Funcon rw-lock-release-exclusive(SY : syncs) :⇒ null-type

 thread-atomic sequential(

check-true assigned sync-feature(SY , sync-held),

assign(sync-feature(SY , sync-held), false),

rw-lock-sync(SY))

Funcon rw-lock-release-shared(SY : syncs) :⇒ null-type

 thread-atomic sequential(

assign(

sync-feature(SY , sync-count),

checked nat-pred assigned sync-feature(SY , sync-count)),

if-true-else(

is-equal(0, assigned sync-feature(SY , sync-count)),

rw-lock-sync(SY),

null-value))

rw-lock-sync(SY) assumes that SY is not held (either exclusively or shared). If the first waiting

request is for sharing, any further sharing requests are granted,

7

Auxiliary Funcon rw-lock-sync(SY : syncs) :⇒ null-type

 if-true-else(

is-equal(assigned sync-feature(SY , sync-waiting-list), []),

null-value,

give(

sync-waiting-list-head-remove(SY),

sequential(

thread-resume first tuple-elements given,

if-true-else(

second tuple-elements given,

sequential(

assign(

sync-feature(SY , sync-count),

nat-succ assigned sync-feature(SY , sync-count)),

rw-lock-sync-all-shared(SY)),

assign(sync-feature(SY , sync-held), true)))))

rw-lock-sync-all-shared(SY) updates the waiting list by removing and resuming all its sharing requests:

Auxiliary Funcon rw-lock-sync-all-shared(SY : syncs) :⇒ null-value

 assign(

sync-feature(SY , sync-waiting-list),

[

left-to-right-filter(

if-true-else(

second tuple-elements given,

sequential(

thread-resume first tuple-elements given,

assign(

sync-feature(SY , sync-count),

nat-succ assigned sync-feature(SY , sync-count)),

false),

true),

list-elements assigned sync-feature(SY , sync-waiting-list))])

8

	Locks

