
Unstable-Funcons-beta: Notifications ∗

The PLanCompS Project

Notifications.cbs | PLAIN | PRETTY

OUTLINE

Notifications

Notifications

[Barriers

Funcon barrier-create

Funcon barrier-sync

Funcon barrier-sync-else-wait

Conditions

Funcon condition-create

Funcon condition-wait

Funcon condition-wait-with-lock

Funcon condition-notify-all

Funcon condition-notify-first

Rendezvous

Funcon rendezvous-create

Funcon rendezvous-sync

Funcon rendezvous-sync-else-wait]

Threads may synchronise by waiting for notifications. In contrast to locks, notifications are ephemeral,

and do not get held and released.

Barriers A barrier notifies all requesting threads when a specified number of requests for it have

been made. Subsequent requests give immediate notification.

Funcon barrier-create(N : pos-ints) :⇒ syncs

 give(

sync-create(

sync-feature-create sync-waiting-list,

sync-feature-create sync-count),

sequential(

assign(sync-feature(given, sync-count),N),

given))

When the barrier is already open, requests to pass it are granted immediately. When the barrier is

closed, and only one more thread needs to arrive, granting a request for it opens the barrier and

resumes all the threads wiating for it; otherwise the request fails.

∗Suggestions for improvement: plancomps@gmail.com.

Reports of issues: https://github.com/plancomps/CBS-beta/issues.

1

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Unstable-Funcons-beta/Computations/Threads/Synchronising/Notifications/Notifications.cbs
/CBS-beta/docs/Unstable-Funcons-beta/Computations/Threads/Synchronising/Notifications/index.html
/CBS-beta/math/Unstable-Funcons-beta/Computations/Threads/Synchronising/Notifications/index.html
https://en.wikipedia.org/wiki/Barrier_(computer_science)
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

Funcon barrier-sync(SY : syncs) :⇒ null-type

 thread-atomic give(

sync-feature(SY , sync-count),

else(

check-true is-equal(assigned given, 0),

sequential(

check-true is-equal(assigned given, 1),

assign(given, 0),

thread-resume list-elements

assigned sync-feature(SY , sync-waiting-list),

assign(sync-feature(SY , sync-waiting-list), []))))

When the request fails, the current thread is added to the waiting list, and suspended until the request

can be granted:

Funcon barrier-sync-else-wait(SY : syncs) :⇒ null-type

 thread-atomic else(

barrier-sync(SY),

sequential(

sync-waiting-list-add(SY , current-thread),

assign(

sync-feature(SY , sync-count),

checked nat-pred assigned sync-feature(SY , sync-count)),

thread-suspend current-thread))

Conditions A condition is used to represent whether some property holds or not. Threads may

request to be notified when another thread makes the property hold.

A condition may notify either one or all of its requesting threads. When it has to notify one thread

but more than one request for notification has been made, the choice of thread may be determined by

the scheduler. When it has to notify more than one thread, the property associated with the condition

may have been invalidated by the time the executions of some of them are resumed, and threads may

need to iterate requests for notifications.

In practice, a condition is generally associated with an exclusive lock. When a thread awaiting the

condition is notified, it requests the exclusive lock and tests whether the required property holds; if it

does not, the thread releases the exclusive lock, and atomically reverts to requesting the notification.

Funcon condition-create :⇒ syncs

 sync-create(

sync-feature-create sync-waiting-list)

A condition request always adds the current thread to the waiting list, and suspends it until the

request can be granted. (In practice, it takes also an associated exclusive lock as a further argument,

assumed to be held by the current thread, and releases it at the same time as suspending the thread.)

Funcon condition-wait(SY : syncs) :⇒ null-type

 thread-atomic sequential(

sync-waiting-list-add(SY , current-thread),

thread-suspend current-thread)

2

http://pages.cs.wisc.edu/~remzi/OSTEP/threads-cv.pdf

In practice, a condition request usually takes also an associated exclusive lock as a further argument,

assumed to be held by the current thread, releases it together with suspending the thread, and waits

for the lock when resumed:

Funcon condition-wait-with-lock(SY : syncs,L : syncs) :⇒ null-type

 sequential(

thread-atomic sequential(

exclusive-lock-release(L),

sync-waiting-list-add(SY , current-thread),

thread-suspend current-thread),

exclusive-lock-sync-else-wait(L))

Threads that are waiting for the condition are notified simply by resuming them. To notify them all:

Funcon condition-notify-all(SY : syncs) :⇒ null-type

 thread-atomic

sequential(

thread-resume list-elements

assigned sync-feature(SY , sync-waiting-list),

assign(sync-feature(SY , sync-waiting-list), []))

To notify just one of the waiting threads:

Funcon condition-notify-first(SY : syncs) :⇒ null-type

 thread-atomic

give(

sync-waiting-list-head-remove(SY),

thread-resume given)

Rendezvous A rendezvous notifies all requesting threads as soon as a specified number N of them

have made matching requests for it. The rendezvous can store any number of non-matching requests.

If a request that completes a rendezvous matches different sets of N-1 pending requests, the ‘lexi-

cographically’ earliest set of requests is selected; for a binary rendezvous, this is the first matching

request in the stored list.

Funcon rendezvous-create(N : pos-ints) :⇒ syncs

 give(

sync-create(

sync-feature-create sync-waiting-list,

sync-feature-create sync-count),

sequential(

assign(sync-feature(given, sync-count),N),

given))

Each rendezvous request includes a pattern, and the corresponding notifications give environments

obtained by matching the patterns against the same unified value. When the pattern in each request

is simply a value, a rendezvous notifies all the requesting threads as soon as the specified number of

requests with the same value have been made. When the pattern in one request is a value, a pattern

in another request may bind an identifier to that value, giving one-way data flow.

A rendezvous request may also include a set of additional threads which are all required to participate

in the rendezvous. When a pair of matching binary rendezvous requests each specify the other thread

as the only required participant, the rendezvous is restricted to that pair of threads. When one of the

sets is empty, the rendezvous may involve any other thread.

3

In this simplified version, rendezvous are always binary, patterns in requests are ground

values, and sets of required threads are omitted.

When a rendezvous is available, granting a request for it removes the first matching element from

the waiting list, and resumes its thread; otherwise the request fails.

Funcon rendezvous-sync(SY : syncs,V : ground-values) :⇒ null-type

 give(

assigned sync-feature(SY , sync-waiting-list),

sequential(

check-true is-rendezvous-match(given,V),

assign(

sync-feature(SY , sync-waiting-list),

rendezvous-first-match-drop(given,V)),

thread-resume

rendezvous-first-match-thread(given,V)))

When the request fails, a tuple of the value and the current thread is added to the waiting list, and

the thread suspended until the request can be granted:

Funcon rendezvous-sync-else-wait(SY : syncs,V : ground-values) :⇒ null-type

 thread-atomic else(

rendezvous-sync(SY ,V),

sequential(

sync-waiting-list-add(SY , tuple(V , current-thread)),

thread-suspend current-thread))

The remaining rendezvous funcons are all auxiliary:

Auxiliary Type rendezvous-waits tuples(ground-values, thread-ids)

The funcon is-rendezvous-match(L,V) returns whether the list L contains tuple(V ,TI) for some TI :

Auxiliary Funcon is-rendezvous-match(: lists(rendezvous-waits), : ground-values) :⇒ booleans

Rule is-rendezvous-match([tuple(V ′,TI),P*],V : values)

if-true-else(is-equal(V ′,V), true, is-rendezvous-match([P*],V))

Rule is-rendezvous-match([],V : values) false

The funcon rendezvous-first-match-thread(L,V) returns the thread-id of the first element of L with

value V :

Auxiliary Funcon rendezvous-first-match-thread(: lists(rendezvous-waits), : values)

:⇒ thread-ids

Rule rendezvous-first-match-thread([tuple(V ′,TI),P*],V : values)

if-true-else(is-equal(V ′,V),TI , rendezvous-first-match-thread([P*],V))

Rule rendezvous-first-match-thread([],V : values) fail

The funcon rendezvous-first-match-drop(L,V) returns the list L omitting the first element with value

V :

4

Auxiliary Funcon rendezvous-first-match-drop(: lists(rendezvous-waits), : values)

:⇒ lists(rendezvous-waits)

Rule rendezvous-first-match-drop([tuple(V ′,TI),P*],V : values)

if-true-else(

is-equal(V ′,V),

[P*],

cons(tuple(V ′,TI), rendezvous-first-match-drop([P*],V)))

Rule rendezvous-first-match-drop([],V : values) fail

A series of rendezvous between the same two threads is called an extended rendezvous. After the

completion of each rendezvous in the series, one of the threads may immediately request the next,

allowing the other thread to execute some code before synchronising. A simple rendezvous is restricted

to synchronisation, and does not involve ordinary computation steps.

5

	Notifications

