Unstable-Languages-beta: LD-Disambiguation *

The PLanCompS Project

LD-Disambiguation.cbs/ | [PLAIN| | PRETTY

OUTLINE

|A Disambiguation|
[A.1 Lexical constructs|
[A.2 Call-by-value lambda-calculus]
[A.3 Arithmetic and Boolean expressions|
|A.4 References and Imperatives|
[A.5 Multithreading|

“1p”

A Disambiguation

A.1 Lexical constructs

lexical syntax
id = keyword {reject}
lexical restrictions

id -/- [a-z0-9]
int -/- [0-9]

context-free syntax
start = exp {prefer}

A.2 Call-by-value lambda-calculus

context-free syntax

exp = lambda id . exp {longest-match}
exp = exp exp {left}
exp = 'let id = exp in exp {longest-match}

context-free priorities

exp 1= exp exp
>

exp = 'lambda id . exp

exp = 'let id = exp in exp

}

*Suggestions for improvement: plancomps@gmail. com.
Reports of issues: https://github.com/plancomps/CBS-beta/issues.

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Unstable-Languages-beta/LangDev-2019/LD-cbs/LD/LD-Disambiguation/LD-Disambiguation.cbs
/CBS-beta/docs/Unstable-Languages-beta/LangDev-2019/LD-cbs/LD/LD-Disambiguation/index.html
/CBS-beta/math/Unstable-Languages-beta/LangDev-2019/LD-cbs/LD/LD-Disambiguation/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

A.3 Arithmetic and Boolean expressions

context-free syntax

exp = exp + exp {left}

exp = exp * exp {left}

exp = exp / exp {left}

exp = exp <= exp {non-assoc}

exp = exp && exp {right}

exp = 'if exp then exp else exp {longest-match}

context-free priorities

exp 1= exp exp
>
{left:
exp = exp * exp
exp = exp /' exp
1>
exp 1= exp + exp
>
exp = exp <= exp
>
exp = exp && exp
> {
exp = 'lambda id . exp
exp = 'let Id = exp in exp
}

A.4 References and imperatives

context-free syntax

exp = exp := exp {non-assoc}
exp = exp ; exp {right}
exp = ‘while exp do exp {longest-match}

context-free priorities

{
exp = ref exp
exp = | exp
1>
exp = exp exp

context-free priorities

exp 1= exp && exp
>
exp = exp := exp
> {
exp = 'lambda id . exp
exp = while exp do exp
>
exp = exp ; exp
>
exp = 'let Id = exp in exp

A.5 Multithreading

context-free priorities

{

—

exp
exp

exp ::

spawn exp
join exp

exp ;' exp

	A Disambiguation
	A.1 Lexical constructs
	A.2 Call-by-value lambda-calculus
	A.3 Arithmetic and Boolean expressions
	A.4 References and imperatives
	A.5 Multithreading

