
Unstable-Languages-beta: SIMPLE-THR-3-Statements ∗

The PLanCompS Project

SIMPLE-THR-3-Statements.cbs | PLAIN | PRETTY

Language “SIMPLE-THR”

3 Statements

Syntax Block : block ::= ‘–’ stmts? ‘˝’

Stmts : stmts ::= stmt stmts?

Stmt : stmt ::= imp-stmt | vars-decl

ImpStmt : imp-stmt ::= block

| exp ‘;’

| ‘if’ ‘(’ exp ‘)’ block (‘else’ block)?

| ‘while’ ‘(’ exp ‘)’ block

| ‘for’ ‘(’ stmt exp ‘;’ exp ‘)’ block

| ‘print’ ‘(’ exps ‘)’ ‘;’

| ‘return’ exp? ‘;’

| ‘try’ block ‘catch’ ‘(’ id ‘)’ block

| ‘throw’ exp ‘;’

| ‘join’ exp ‘;’

| ‘acquire’ exp ‘;’

| ‘release’ exp ‘;’

| ‘rendezvous’ exp ‘;’

Rule J ‘if’ ‘(’ Exp ‘)’ Block K : stmt =

J ‘if’ ‘(’ Exp ‘)’ Block ‘else’ ‘–’ ‘˝’ K
Rule J ‘for’ ‘(’ Stmt Exp1 ‘;’ Exp2 ‘)’

‘–’ Stmts ‘˝’ K : stmt =

J ‘–’ Stmt

‘while’ ‘(’ Exp1 ‘)’

‘–’ ‘–’ Stmts ‘˝’ Exp2 ‘;’ ‘˝’

‘˝’ K

∗Suggestions for improvement: plancomps@gmail.com.

Reports of issues: https://github.com/plancomps/CBS-beta/issues.

1

https://plancomps.github.io
https://github.com/plancomps/CBS-beta/blob/math/Unstable-Languages-beta/SIMPLE-Threads/SIMPLE-THR-cbs/SIMPLE-THR/SIMPLE-THR-3-Statements/SIMPLE-THR-3-Statements.cbs
/CBS-beta/docs/Unstable-Languages-beta/SIMPLE-Threads/SIMPLE-THR-cbs/SIMPLE-THR/SIMPLE-THR-3-Statements/index.html
/CBS-beta/math/Unstable-Languages-beta/SIMPLE-Threads/SIMPLE-THR-cbs/SIMPLE-THR/SIMPLE-THR-3-Statements/index.html
mailto:plancomps@gmail.com
https://github.com/plancomps/CBS-beta/issues

Semantics execJ : stmts K :⇒ null-type

Rule execJ ‘–’ ‘˝’ K = null

Rule execJ ‘–’ Stmts ‘˝’ K = execJ Stmts K
Rule execJ ImpStmt Stmts K =

sequential(execJ ImpStmt K, execJ Stmts K)

Rule execJ VarsDecl Stmts K =

scope(declareJ VarsDecl K, execJ Stmts K)

Rule execJ VarsDecl K = effect(declareJ VarsDecl K)

Rule execJ Exp ‘;’ K = effect(rvalJ Exp K)

Rule execJ ‘if’ ‘(’ Exp ‘)’ Block1 ‘else’ Block2 K =

if-else(rvalJ Exp K, execJ Block1 K, execJ Block2 K)

Rule execJ ‘while’ ‘(’ Exp ‘)’ Block K = while(rvalJ Exp K, execJ Block K)

Rule execJ ‘print’ ‘(’ Exps ‘)’ ‘;’ K = print(rvalsJ Exps K)

Rule execJ ‘return’ Exp ‘;’ K = return(rvalJ Exp K)

Rule execJ ‘return’ ‘;’ K = return(null)

Rule execJ ‘try’ Block1 ‘catch’ ‘(’ Id ‘)’ Block2 K =

handle-thrown(

execJ Block1 K,
scope(

bind(idJ Id K, allocate-initialised-variable(values, given)),

execJ Block2 K))

Rule execJ ‘throw’ Exp ‘;’ K = throw(rvalJ Exp K)

SIMPLE uses natural numbers to identify threads; the use of lookup-index() below converts a natural

number to the associated thread-id.

Rule execJ ‘join’ Exp ‘;’ K =

thread-join lookup-index(rvalJ Exp K)

The use of memo-value(V ,SY) below associates V with a lock. When a thread requests a lock

already held by another thread, the requesting thread is suspended until the request is granted. The

use of postpone() below automatically releases held locks when the current thread terminates.

Rule execJ ‘acquire’ Exp ‘;’ K =

give(

memo-value(rvalJ Exp K, reentrant-lock-create),

sequential(

postpone

if-true-else(

is-exclusive-lock-holder given,

reentrant-lock-release given,

null-value),

reentrant-lock-sync-else-wait given))

The use of memo-value-recall(V) below gives the lock associated with V .

Rule execJ ‘release’ Exp ‘;’ K =

reentrant-lock-exit memo-value-recall rvalJ Exp K

The use of memo-value(V ,SY) below associates V with a rendezvous. When a thread requests a

rendezvous on a particular value, and there is no previous uncompleted request for a rendezvous on

the same value, the requesting thread is suspended until the request is granted.

2

Rule execJ ‘rendezvous’ Exp ‘;’ K =

rendezvous-sync-else-wait(

memo-value(“rendezvous”, rendezvous-create(2)),

rvalJ Exp K)

3

	3 Statements

