Modular Bisimulation Theory for Computations and Values 17
Appendix A Proofs of Congruence Results

Lemma 20 (Main text: Lemma 8). Let r be a pattern and o a substitution
with dom(o) = vars(r). Let R’ denote the reflexive congruence closure of a vc-
bisimulation R and suppose r[o|R't. Then exists T with dom(1) = vars(r) such
that t = r[7] and for each x, o(x)R'7(z).

Proof. We proceed by induction on r. If r is a variable, we can set 7 = {r — t}
and we are done by reflexivity of =. Otherwise, r = v(ry,...,r,) for value
constructor v and patterns rq,...,r,. Then r[o] = v(ri[o],...,r[0])R't.

If this holds for reflexivity reasons, we can set 7 = ¢ and are done by reflexivity
of R and =-. If this holds for congruence reasons, we must have t = v(t1,...,t,)
with 75[0] = 74[0|vars(r,) [R'ti for 1 < i < n. By applying the inductive hypothesis
to each, we can find 7; with t; = r;[7;] and o(x)R7;(x) for each z. Let 7 = 4 ;.

By applying the precongruence rule, t = v(t1,...,t,) = v(r1,...,r)[7] = r[7]
with o(z)R'7(z) for each x, as required.
If rlo] = v(rio],...,rn[o])REt, then since R is a ve-bisimulation we must

have t = v(t1,...,t,) with 75[0] = 74[0yars(r)] R't; for 1 < i < n. By applying
the inductive hypothesis to each, we find 7; with ¢; = r;[r;] and o(z)R7;(z)

for each x. Let 7 = |4/ 7;. By applying the precongruence rule, v(ty,...,t,) =
v(ry,...,rn)[r] = r[r]. By applying the transitivity rule, we see that t = r[r]
with o(z)R'7(x) for each z, as required. O

Theorem 21 (Main text: Theorem 9). If all rules in a value-computation
transition system are defined in the value-added tyft format and well-founded,
then vc-bisimilarity in that system is a congruence.

Proof. We first remove each value variable appearing in the rules. If a value
variable v appears in a rule R, we may remove it by adding an additional rule
for each value constructor f, replacing v for f(z1,...,z,) where n = ar(f) and
x; are fresh variables. The result is still in the value-added tyft format.

Let R be a ve-bisimulation, and let R’ denote the reflexive congruence closure
of R. We will show that R’ is also a vc-bisimulation, and since R’ contains R we
can conclude that ve-bisimilarity is a congruence.

To show that R’ is a bisimulation, we must show the three conditions in
Definition 5. The third condition follows immediately from the above lemma: If
s =wv(s1,...,8,)R't then s = r[o] where r = v(x1,...,2,) and 0 = {z; — s,}.
By the lemma, t = r[r] with 7 = {&; — ¢;} and s;R't;. Then t = v(¢t1,...,t,) as
required.

We next prove conditions (1) and (2) simultaneously, showing that s ~» s’ and
sR't implies exists ¢’ with ¢ ~ ¢/ with s'R't’ for any ~» of the form = or . We
write ~~, possibly with subscripts, for variables ranging over such arrows. Note
that by using either saturation or transitivity, the following is always admissible:

s = 851 $1 ~ 89 Sy = s’

5~ 5

18 Churchill, Mosses

We will refer to this rule as ‘generalised saturation’.

Suppose s ~ s' with sR’t. We proceed by induction on the proof that s ~ s'.
We consider case analysis on sR't. If sRt then the step condition holds using the
fact that R is a ve-bisimulation. If s = ¢ then the step condition is trivial. In
the final case, s = f(s1,...,8,) and t = f(t1,...,t,) with s;R't;. Let s ~ s’ be
witnessed by a proof v with immediate children {v; : i € I'}. Let R denote the
final rule used in v under substitution o.

Now R is either one of the built in rules or a value-added tyft rule.

Tyft rule: Suppose R concludes r ~ ' from {u; ~; u} : i € I'} with r[o] = s,
r'[o] = ¢’ and with v; a proof of u;[o] ~; uf[o]. Since R is in the value-added
tyft format, we must have r = f(rq,...,r,) with r;[o] = s; where each r; is a
pattern.

Now, s; = 7j[0|vars(r;)] R't; for 1 < j < n. We apply the lemma for each
such j and let 7 denote the disjoint union of the resulting substitutions. Thus,
o(z)Rr(z) for each x in vars(r), and t; = r;[7]. By applying the precongruence
rule at f, t = r[7].

Well-foundedness ensures that variables in u} do not appear in uj,u9 for
j < i. We will now show that for each ¢ € I there exists a substitution 7; such
that 7, O 7; for each j < ¢, 7; D 7; u;[7i] ~»; wj[r;]; and for each x € dom(r;),
o(x)Rr;(x).

We proceed by (ordinal) induction on i. Let 7} = 7 U Uj<i 75 Let 2 =
T |vars(u;)—dom(r1)- Now, we know that s; = u;[o]. By the (inner) inductive
hypothesis we see that for each z € dom(7?), 72(z)R'o(z). Let t; = u;[r?]. Then,
since R’ is a congruence, s; = u;[0]R'u;[T?] = t;. Since s; ~+; s; we may apply
the (outer) inductive hypothesis to see that there exists ¢, such that ¢; ~; t}

!/

with s}R't,. But also note that s, = wj}[o] and u} is a pattern. By applying

7
the lemma, we can find 73 such that t; = u/[r?] with o(z)R'73(z) for each
x € dom(73) = vars(u}). Let 7; = 72073, Then u;[7;] = u;[1?] = t; ~ th = ul7].
By applying generalised saturation, we see that u;[r;] ~»; w;[r;]. Since 7; O 7; for
Jj <iand Vx € dom(m;), o(x)R'm;(x), we are done.

Now, let 7/ = (J;c; - Then Vo € dom(7’), o(z)R'7'(x). Also for each i,
w;[T'] ~; ui[T']. We may thus apply the rule R and conclude that r[7'] ~ r/[7'].
Since t = r[7'] we may apply generalised saturation and conclude that ¢ ~ ¢/
where ¢ = 7/[7']. We only need to show that s'Rt’. Well s’ = r'[o] and t' = r'[7'],
and o(z)R'7'(x) for each x. Since R’ is a congruence, it follows that s'R't’.

Built-in rule: If R is the saturation rule then ~» = % and the premises of
are s = s1, 5] — s and sy = s'. Since sR't and s = s, by inductive hypothesis
t = t; with s;R't;. Then by inductive hypothesis t; — t» with sy R't,. Finally,
by inductive hypothesis t3 = ¢’ with s'R't’. By applying the saturation rule,
t &t/ with s'R't', as required. The transitivity rule for = is entirely similar.

If R is reflexivity for =, then s’ = s and we can simply take ¢’ = t.

If R is the precongruence rule for = then we must have s; = s, with
s = f(s},...,sl,). Since s;Rt; we may apply the inductive hypothesis to see

ren

that t; = ¢, with s;R’t.. By applying the precongruence rule we see that ¢t =

Modular Bisimulation Theory for Computations and Values 19

t' = f(t},...,t]). As R’ is a precongruence, we find that s'R't’, and the proof is
complete. O

We will now move to the MSOS setting. We use variables such as ~» to range

over arrows —» and =. Define reads(i) = reads(L), reads(=) = 0, Writes(£>) =
writes(L) and writes(=) = ().

Proposition 22 (Main text: Proposition 16). Each well-founded MSOS tyft
system is equivalent to one in the explicit MSOS tyft format.

Proof. Given an MSOS transition system 7' over label profile £ we first produce
an equivalent set of rules removing all uses of label variables, exhibiting all
information flow in labels explicitly. We modify each rule in T'. First, let I denote
the elements in reads(L£) W writes(£) not mentioned explicitly in that rule. Then:

— A variable ranging over arbitrary labels (e.g. *...") and not appearing in a
composition is replaced by {l = x;} for fresh variables x; for each [€ I.

— If the conclusion label ends with the empty composition (‘—’) it is replaced
by {l = s} for | € I, where:

e For x € Lo, sx is a fresh variable.
e For x € Lrw, sx and sy are the same fresh variable.
e For x € Lwo, Sx/ = ix.

— If the conclusion label ends with label variable composition X, o...0 X3
then we replace each X; by {l = s;;} and X,,0...0X; by {{ =s;} forl eI
where:

e For x € Lro, sx and each sy ; are the same fresh variable.

e For x € Lpw, sx and each sy ; are fresh variables, sx 1 = sy, sx j+1 =
Sx/ j and Sxr = Sx/ p.

e For x € Lwo, each sy j is a fresh variable and sy = t,, where ¢y = sx/ o
and tj11 = Ox(tj, 5x/,j+1)-

The resulting system explicitly expresses the underlying mechanics of unobserv-
ability and composition, and does so in the MSOS tyft format. a

Proposition 23 (Main text: Proposition 17). Consider a MSOS specifica-
tion in explicit MSOS tyft format. Let R be an MSOS bisimulation over the
generated transition system and let R’ denote the reflexive transitive congruence
closure of R. Suppose sR't. Then:

1. If s = r[o] with dom(c) = vars(r) and r is a pattern then exists T with
dom(7) = vars(r) such that t = r[r] with o(x)R'T(x) for each x € vars(r).

2. If s ~ &' and reads(~)R'trs then exists ~'t' such that t ~' t', reads(~') =
trs, writes(~') R'writes(~') and ~' = = iff ~ = =.

Proof. We first remove each value variable appearing in the rules. If a value
variable v appears in a rule R, we may remove it by adding an additional rule
for each value constructor f, replacing v for f(z1,...,z,) where n = ar(f) and
x; are fresh variables. The result is still in the MSOS tyft format.

20 Churchill, Mosses

We then proceed by simultaneous induction on R’. We first show condition 1.

Reflexivity. If r[o] = t then we can take 7 = ¢ and the result follows by
reflexivity of = and R'.

Transitivity. If r[c]R'sR't then we may apply inductive hypothesis 1. to
construct p with dom(p) = dom(o) = vars(r) with s = r[p] and for each =z,
o(x)R'p(x). Since sR't and s = r[p] by applying inductive hypothesis 2. it
follows that ¢t = ' for some r[p|R't’. By inductive hypothesis 1., exists 7 with
dom(7) = vars(r) and ¢ = r[r] and for each = p(x)R'r(x). By applying the
transitivity rule for = we see that ¢ = r[r]|. Finally, for each = € vars(r),
o(x)R'p(x)R'7(x) and since R’ is transitive, o(x)R'7(x) as required.

Congruence. If r is a variable, we can set 7 = {r — t} and we are done by

reflexivity of =. Otherwise, r = v(r1,...,r,) for value constructor v and patterns
T1,...,7n. Then r[o] = v(ri[o],...,ry[o])R't. Since sR't for congruence reasons,
we must have t = v(ty,...,t,) with r;[o] = ri[o|as(r,)|R't; for 1 < i < n. By

applying inductive hypothesis 1. to each, we see that t; = r;[r;] with o(x)R'7;(z)
for each 2. Let 7 = |4 7. By applying the precongruence rule, t = v(ty,...,t,) =
v(ry,...,ry)[7] = r[r] with o(x)R'7(x) for each z, as required.

Base relation. If r is a variable, we can set 7 = {r — t} and we are done
by reflexivity of =-. Otherwise, if r[o] = v(r1[o],...,rn[0]) Rt, then since R is a
MSOS bisimulation we must have t = v(t1,...,t,) with ri[o] = ri[ovars(r,)| Rt:
for 1 <i < n. By applying inductive hypothesis 1. to each, we see that t; = r;[7;]
with o(x)R'1;(z) for each z. Let 7 = |4 7;. By applying the precongruence rule,
v(t1, ... tn) = v(r1,...,m)[7] = r[7]. By applying the transitivity rule, we see
that t = r[r] with o(z)R'r(x) for each z, as required.

We next show condition 2.

Congruence. We now consider the case that s = f(s1,...,8,) and t =
f(t1, ..., t,) with s; R't;. We proceed by a 2nd level induction on the proof that
s~ s'. Let R denote the last rule used in this proof. We perform case analysis
on the nature of R.

R is a MSOS tyft rule. Suppose R concludes r ~ 7/ from {r; ~R rl:i e I}
with substitution o. Let rs = dom(reads(~")) and rs, = reads(~"%)(z). Then
for each x, rs,[c]R'trs,. Since rs, is a pattern, we may apply condition 1. to
construct 7! with trs, = rs,[r!] and for each z € dom(r!), o(z)R'T(x!). Also
rlo]Rt and we may construct 72 similarly, with ¢ = 7[r?], dom(7?) = vars(r),
and for all z € vars(r), o(z)R'T%(z). Let 7 = 71 w2

We now construct a sequence of substitutions 7;. For each ¢ we will show that:
7 27,1 215 for j <, (r; % r!)[r;] and for all z in dom(7;), o(z)R'7i(z). We
proceed by a 3rd level (ordinal) induction on .

Let 7 = U, ; 7. By 3rd level induction, for all 2 in dom(7}'), o(z) R'7}(z).
Since R’ is a congruence r;[o0]R'r;[t}(z)]. Also, reads(~7)[c]R'reads(~R)[r}].
Also, (r; ~T rl)[o]. By inductive hypothesis 2., we may find ¢} and ~/ such that
ri[T}(z)] ~4 th with ri[o] R't], reads(~") = reads(~T)[r!] and writes(~7)[o] R’
writes(~/). For each x in dom(writes(~;)), writes(~) (z)[o] R/ writes(~)(z). But
writes(~1%)(x) is a pattern. We may apply condition 1. to find that writes(~})(z) =

i

Modular Bisimulation Theory for Computations and Values 21

RY(z)[r"]. Also, since 74[o]R't; we may apply condition 1 to find 72
with ¢} = /[72]. Let 7; denote the disjoint union of 7;', 72 and each 7. Then
writes(~)(x) = writes(~7)(z)[r;] and ¢, = r/[r;]. By applying the saturation
rule (for ¢, and each writes(~')(z)) we see that (r; ~= r!)[r;]. Also, for each =
in dom(7;), o;(x)R'7;(x), as required.

Let 7/ = J;c; 7i- We can apply the rule R to each (r; ~7 r})[7’] to conclude
that (r ~® 1/)[7']. Let ¢ = r'[7/]. Then t = r[r] = r[r'] ~T [7']t'. Let ~' =
~~TR [7']. Then by saturation t~'t'. Also s'R't' since ¢ = r'[7'] and s’ = 7/[0] and
for each z, o(x)R'T'(x). Also writes(~) = writes(~7 [o]) R'writes(~7 []) =
writes(~') and similarly reads(~) = reads(~').

writes(~>

R is a saturation rule. If R is a source-target saturation rule and s = s; ~»
s9 = s’ with sR't we may apply the inductive hypothesis to each case sequentially,
constructing ¢; and to such that t = t; ~' to = t/ with s1R't1, soR'ts, 'Rt/
and writes(~) R'writes(~") and reads(~') = trs. By applying the saturation rule,
we can conclude that ¢ ~' ¢’ as required.

If R is a read-saturation rule under component z, then reads(~)(z) =
reads(~+1)(x) and s ~+1 s’. Since reads(~)(x)R'trs(x) by inductive hypothesis 2.
trs(xz) = p with reads(~1)(x)R'p. Let trs’ = trs[x — p]. Then trs’' R'reads(~~1).
Since sR't by inductive hypothesis, exists ~} with ¢ ~] t' with 'Rt’ and
reads(~}) = trs’ and writes(~»1)R'writes(~}). By applying the read-saturation
rule, we find that s ~»; t' with s'R't’, reads(~>1) = #rs and writes(~>1) =
writes(~]) R'writes(~1) = writes(~>) as required.

If R is a write-saturation rule under z, then s ~»1 s’ and writes(~1)(x) =
p and ~» = ~»1[z — pl|. Since writes(~1)(x) = writes(~1)(z), by inductive
hypothesis 2. we must have pR'writes(~1)(x). By inductive hypothesis 2. again
since sRt, exists ~»] with ¢ ~} ¢’ with s'Rt’, reads(~]) = trs and writes(~+1)R’
writes(~1). By applying the write saturation rule, t ~' ' where ~'=~-/ [z — p].
Now reads(~') = trs and writes(~)R'writes(~'), since: for each y # x we have
writes(~)(y) = writes(~>1)(y)Rwrites(~)(y) = writes(~')(y); for x we have
writes(~)(x) = pR'writes(~") ().

R is a built-in = rule. The cases of reflexivity, transitivity and precongruence
follow simply by induction as in Theorem 9, nothing that in such cases both ~~
and ~' are = and so no labels are involved.

Reflexivity. Suppose s = t. If ~ = = the case is trivial as trs = () and we
can take t' = s’. Otherwise, we proceed by a 2nd level induction on the proof
that s ~ s’. Let R denote the last rule used in this proof.

R is a tyft rule. Suppose R concludes r ~= r/ from {r; ~R rl:i € I} with
substitution o. Let rs = dom(reads(~")) and rs, = reads(~")(z). Then for each
x, rs; 0] R trs,. We may apply condition 1. to construct 7! with trs, = rs,[r!]
and for each 2 € dom(7), o(x)R'T' (). Let 7 = 7' U 0lyars(r). By reflexivity of R/,
for each x € dom(7), o(x)R'T(x).

We now construct a sequence of substitutions 7;. For each ¢ we will show that:
7 27, 1 215 for j <, (r; ~F r})[r;] and for all z in dom(7;), o(x)R'7i(z). We
proceed by a 3rd level (ordinal) induction on 4, and the proof is exactly as in the
congruence case above.

22 Churchill, Mosses

Let 7/ = ;e 7i- We can apply the rule R to each (r; ~[

X ri)[r’] to con-
clude that (r ~® r/)[7']. Let ¢’ = 7/[r'] and ~»'=~»F [r]. Then s = t ~' t’.
Also s'R't' since t' = r'[7'] and s’ = 7'[o] and for each z, o(x)R'7'(z). Also,
writes(~) R'writes(~') and reads(~>) = reads(~').

R is a saturation rule. The saturation rules follow exactly as in the congruence
case (the proof of this particular subcase didn’t actually use congruence) in the
degenerate case that s = ¢.

Transitivity. Let s ~ s’ and sR'rR't and reads(~>)R'trs. Then by inductive
hypothesis r ~' v’ with reads(~") = trs and writes(~) R'writes(~'). By inductive
hypothesis again ¢ ~" t' with reads(~"") = trs and writes(~") R'writes(~~"") and
r’R't’. Since R’ is transitive, s'R’t’ and writes(~) R'writes(~"), and we are done.

Base relation. Suppose then that sRt and s ~ s’. Using the reflexivity
case above, since sR's, we can find ~’ and s’ such that s ~' s’ s’R's",
reads(~') = trs and writes(~~) R'writes(~'). Then, since sRt and R is an MSOS
bisimulation, we find that ¢ ~" ¢’ with s”Rt’, reads(~") = reads(~') = trs
and writes(~') Rwrites(~"). Since s'R's” R't' and R’ is transitive, we have s'R't’.
Since writes(~") R'writes(~"") and writes(~~"") Rwrites(~") we find that writes(~~")
R’ writes(~), as required. O

Theorem 24 (Main text: Theorem 18). Consider an MSOS system T in
the well-founded MSOS tyft format. Let R be an MSOS bisimulation and R’
denote the reflexive transitive congruence closure of R. Then R’ is an MSOS
bisimulation.

Proof. We first convert T into equivalent 77 which is an explicit MSOS tyft
format following Proposition 16. We then show that R’ is an MSOS bisimulation
by considering the three conditions in turn:

1. Follows by Proposition 17 point 2. taking trs = reads(L).
2. This condition is precisely Proposition 17 point 3., corresponding to point 2.
in the above proof taking ~» = ~' = =.

3. If s=wv(s1,...,8,)R't then s = r[o] where r = v(x1,...,2,) and o0 = {z; —
sn}. By applying Proposition 17 point 1, ¢t = r[7] with 7 = {z; — ¢;} and
s;R't;. Then t = v(ty,...,t,) as required.]

Corollary 25. MSOS-bisimilarity is a congruence for specifications in the well-
founded MSOS tyft format.

