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Appendix A Proofs of Congruence Results

Lemma 20 (Main text: Lemma 8). Let r be a pattern and σ a substitution
with dom(σ) = vars(r). Let R� denote the reflexive congruence closure of a vc-
bisimulation R and suppose r[σ]R�t. Then exists τ with dom(τ) = vars(r) such
that t ⇒ r[τ ] and for each x, σ(x)R�τ(x).

Proof. We proceed by induction on r. If r is a variable, we can set τ = {r �→ t}
and we are done by reflexivity of ⇒. Otherwise, r = v(r1, . . . , rn) for value
constructor v and patterns r1, . . . , rn. Then r[σ] = v(r1[σ], . . . , rn[σ])R

�t.
If this holds for reflexivity reasons, we can set τ = σ and are done by reflexivity

of R� and ⇒. If this holds for congruence reasons, we must have t = v(t1, . . . , tn)
with ri[σ] = ri[σ|vars(ri)]R�ti for 1 ≤ i ≤ n. By applying the inductive hypothesis
to each, we can find τi with ti ⇒ ri[τi] and σ(x)Rτi(x) for each x. Let τ =

�
τi.

By applying the precongruence rule, t = v(t1, . . . , tn) ⇒ v(r1, . . . , rn)[τ ] = r[τ ]
with σ(x)R�τ(x) for each x, as required.

If r[σ] = v(r1[σ], . . . , rn[σ])Rt, then since R is a vc-bisimulation we must
have t ⇒ v(t1, . . . , tn) with ri[σ] = ri[σvars(ri)]R

�ti for 1 ≤ i ≤ n. By applying
the inductive hypothesis to each, we find τi with ti ⇒ ri[τi] and σ(x)Rτi(x)
for each x. Let τ =

�
τi. By applying the precongruence rule, v(t1, . . . , tn) ⇒

v(r1, . . . , rn)[τ ] = r[τ ]. By applying the transitivity rule, we see that t ⇒ r[τ ]
with σ(x)R�τ(x) for each x, as required. ��

Theorem 21 (Main text: Theorem 9). If all rules in a value-computation
transition system are defined in the value-added tyft format and well-founded,
then vc-bisimilarity in that system is a congruence.

Proof. We first remove each value variable appearing in the rules. If a value
variable v appears in a rule R, we may remove it by adding an additional rule
for each value constructor f , replacing v for f(x1, . . . , xn) where n = ar(f) and
xi are fresh variables. The result is still in the value-added tyft format.

Let R be a vc-bisimulation, and let R� denote the reflexive congruence closure
of R. We will show that R� is also a vc-bisimulation, and since R� contains R we
can conclude that vc-bisimilarity is a congruence.

To show that R� is a bisimulation, we must show the three conditions in
Definition 5. The third condition follows immediately from the above lemma: If
s = v(s1, . . . , sn)R

�t then s = r[σ] where r = v(x1, . . . , xn) and σ = {xi �→ sn}.
By the lemma, t ⇒ r[τ ] with τ = {xi �→ ti} and siR

�ti. Then t = v(t1, . . . , tn) as
required.

We next prove conditions (1) and (2) simultaneously, showing that s � s� and
sR�t implies exists t� with t � t� with s�R�t� for any � of the form ⇒ or

a−→. We
write �, possibly with subscripts, for variables ranging over such arrows. Note
that by using either saturation or transitivity, the following is always admissible:

s ⇒ s1 s1 � s2 s2 ⇒ s�

s � s�
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We will refer to this rule as ‘generalised saturation’.

Suppose s � s� with sR�t. We proceed by induction on the proof that s � s�.
We consider case analysis on sR�t. If sRt then the step condition holds using the
fact that R is a vc-bisimulation. If s = t then the step condition is trivial. In
the final case, s = f(s1, . . . , sn) and t = f(t1, . . . , tn) with siR

�ti. Let s � s� be
witnessed by a proof γ with immediate children {γi : i ∈ I}. Let R denote the
final rule used in γ under substitution σ.

Now R is either one of the built in rules or a value-added tyft rule.

Tyft rule: Suppose R concludes r � r� from {ui �i u
�
i : i ∈ I} with r[σ] = s,

r�[σ] = s� and with γi a proof of ui[σ] �i u
�
i[σ]. Since R is in the value-added

tyft format, we must have r = f(r1, . . . , rn) with rj [σ] = sj where each rj is a
pattern.

Now, sj = rj [σ|vars(rj)]R�tj for 1 ≤ j ≤ n. We apply the lemma for each
such j and let τ denote the disjoint union of the resulting substitutions. Thus,
σ(x)Rτ(x) for each x in vars(r), and tj ⇒ rj [τ ]. By applying the precongruence
rule at f , t ⇒ r[τ ].

Well-foundedness ensures that variables in u�
i do not appear in uj ,u

�
j for

j < i. We will now show that for each i ∈ I there exists a substitution τi such
that τi ⊇ τ ; for each j < i, τi ⊇ τj ; ui[τi] �i u

�
i[τi]; and for each x ∈ dom(τi),

σ(x)Rτi(x).

We proceed by (ordinal) induction on i. Let τ1i = τ ∪ �
j<i τj . Let τ2i =

τ1i � σ|vars(ui)−dom(τ1
i )
. Now, we know that si = ui[σ]. By the (inner) inductive

hypothesis we see that for each x ∈ dom(τ2i ), τ
2
i (x)R

�σ(x). Let ti = ui[τ
2
i ]. Then,

since R� is a congruence, si = ui[σ]R
�ui[τ

2
i ] = ti. Since si �i s

�
i we may apply

the (outer) inductive hypothesis to see that there exists t�i such that ti �i t
�
i

with s�iR
�t�i. But also note that s�i = u�

i[σ] and u�
i is a pattern. By applying

the lemma, we can find τ3i such that t�i ⇒ u�
i[τ

3
i ] with σ(x)R�τ3i (x) for each

x ∈ dom(τ3i ) = vars(u�
i). Let τi = τ2i �τ3i . Then ui[τi] = ui[τ

2
i ] = ti �i t

�
i ⇒ u�

i[τi].
By applying generalised saturation, we see that ui[τi]�i u

�
i[τi]. Since τi ⊇ τj for

j < i and ∀x ∈ dom(τi), σ(x)R
�τi(x), we are done.

Now, let τ � =
�

i∈I τi. Then ∀x ∈ dom(τ �), σ(x)R�τ �(x). Also for each i,
ui[τ

�]�i u
�
i[τ

�]. We may thus apply the rule R and conclude that r[τ �]� r�[τ �].
Since t ⇒ r[τ �] we may apply generalised saturation and conclude that t � t�

where t� = r�[τ �]. We only need to show that s�Rt�. Well s� = r�[σ] and t� = r�[τ �],
and σ(x)R�τ �(x) for each x. Since R� is a congruence, it follows that s�R�t�.

Built-in rule: If R is the saturation rule then � =
a−→ and the premises of γ

are s ⇒ s1, s1
a−→ s2 and s2 ⇒ s�. Since sR�t and s ⇒ s1, by inductive hypothesis

t ⇒ t1 with s1R
�t1. Then by inductive hypothesis t1

a−→ t2 with s2R
�t2. Finally,

by inductive hypothesis t2 ⇒ t� with s�R�t�. By applying the saturation rule,
t

a−→ t� with s�R�t�, as required. The transitivity rule for ⇒ is entirely similar.

If R is reflexivity for ⇒, then s� = s and we can simply take t� = t.

If R is the precongruence rule for ⇒ then we must have si ⇒ s�i with
s� = f(s�1, . . . , s

�
n). Since siRti we may apply the inductive hypothesis to see

that ti ⇒ t�i with s�iR
�t�i. By applying the precongruence rule we see that t ⇒



Modular Bisimulation Theory for Computations and Values 19

t� = f(t�1, . . . , t
�
1). As R

� is a precongruence, we find that s�R�t�, and the proof is
complete. ��

We will now move to the MSOS setting. We use variables such as � to range

over arrows
L−→ and ⇒. Define reads( L−→) = reads(L), reads(⇒) = ∅, writes( L−→) =

writes(L) and writes(⇒) = ∅.

Proposition 22 (Main text: Proposition 16). Each well-founded MSOS tyft
system is equivalent to one in the explicit MSOS tyft format.

Proof. Given an MSOS transition system T over label profile L we first produce
an equivalent set of rules removing all uses of label variables, exhibiting all
information flow in labels explicitly. We modify each rule in T . First, let I denote
the elements in reads(L) � writes(L) not mentioned explicitly in that rule. Then:

– A variable ranging over arbitrary labels (e.g. ‘. . .’) and not appearing in a
composition is replaced by {l = xl} for fresh variables xl for each l ∈ I.

– If the conclusion label ends with the empty composition (‘−’) it is replaced
by {l = sl} for l ∈ I, where:
• For x ∈ LRO , sx is a fresh variable.
• For x ∈ LRW , sx and sx� are the same fresh variable.
• For x ∈ LWO , sx� = ιx.

– If the conclusion label ends with label variable composition Xn ◦ . . . ◦ X1

then we replace each Xj by {l = sl,j} and Xn ◦ . . . ◦X1 by {l = sl} for l ∈ I
where:
• For x ∈ LRO , sx and each sx,j are the same fresh variable.
• For x ∈ LRW , sx and each sx�,j are fresh variables, sx,1 = sx, sx,j+1 =
sx�,j and sx� = sx�,n.

• For x ∈ LWO , each sx�,j is a fresh variable and sx� = tn where t0 = sx�,0

and tj+1 = �x(tj , sx�,j+1).

The resulting system explicitly expresses the underlying mechanics of unobserv-
ability and composition, and does so in the MSOS tyft format. ��

Proposition 23 (Main text: Proposition 17). Consider a MSOS specifica-
tion in explicit MSOS tyft format. Let R be an MSOS bisimulation over the
generated transition system and let R� denote the reflexive transitive congruence
closure of R. Suppose sR�t. Then:

1. If s = r[σ] with dom(σ) = vars(r) and r is a pattern then exists τ with
dom(τ) = vars(r) such that t ⇒ r[τ ] with σ(x)R�τ(x) for each x ∈ vars(r).

2. If s � s� and reads(�)R�trs then exists ��,t� such that t �� t�, reads(��) =
trs, writes(��)R�writes(��) and �� =⇒ iff � =⇒.

Proof. We first remove each value variable appearing in the rules. If a value
variable v appears in a rule R, we may remove it by adding an additional rule
for each value constructor f , replacing v for f(x1, . . . , xn) where n = ar(f) and
xi are fresh variables. The result is still in the MSOS tyft format.
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We then proceed by simultaneous induction on R�. We first show condition 1.
Reflexivity. If r[σ] = t then we can take τ = σ and the result follows by

reflexivity of ⇒ and R�.
Transitivity. If r[σ]R�sR�t then we may apply inductive hypothesis 1. to

construct ρ with dom(ρ) = dom(σ) = vars(r) with s ⇒ r[ρ] and for each x,
σ(x)R�ρ(x). Since sR�t and s ⇒ r[ρ] by applying inductive hypothesis 2. it
follows that t ⇒ t� for some r[ρ]R�t�. By inductive hypothesis 1., exists τ with
dom(τ) = vars(r) and t� ⇒ r[τ ] and for each x ρ(x)R�τ(x). By applying the
transitivity rule for ⇒ we see that t ⇒ r[τ ]. Finally, for each x ∈ vars(r),
σ(x)R�ρ(x)R�τ(x) and since R� is transitive, σ(x)R�τ(x) as required.

Congruence. If r is a variable, we can set τ = {r �→ t} and we are done by
reflexivity of⇒. Otherwise, r = v(r1, . . . , rn) for value constructor v and patterns
r1, . . . , rn. Then r[σ] = v(r1[σ], . . . , rn[σ])R

�t. Since sR�t for congruence reasons,
we must have t = v(t1, . . . , tn) with ri[σ] = ri[σ|vars(ri)]R�ti for 1 ≤ i ≤ n. By
applying inductive hypothesis 1. to each, we see that ti ⇒ ri[τi] with σ(x)R�τi(x)
for each x. Let τ =

�
τi. By applying the precongruence rule, t = v(t1, . . . , tn)⇒

v(r1, . . . , rn)[τ ] = r[τ ] with σ(x)R�τ(x) for each x, as required.

Base relation. If r is a variable, we can set τ = {r �→ t} and we are done
by reflexivity of ⇒. Otherwise, if r[σ] = v(r1[σ], . . . , rn[σ])Rt, then since R is a
MSOS bisimulation we must have t ⇒ v(t1, . . . , tn) with ri[σ] = ri[σvars(ri)]Rti
for 1 ≤ i ≤ n. By applying inductive hypothesis 1. to each, we see that ti ⇒ ri[τi]
with σ(x)R�τi(x) for each x. Let τ =

�
τi. By applying the precongruence rule,

v(t1, . . . , tn)⇒ v(r1, . . . , rn)[τ ] = r[τ ]. By applying the transitivity rule, we see
that t ⇒ r[τ ] with σ(x)R�τ(x) for each x, as required.

We next show condition 2.

Congruence. We now consider the case that s = f(s1, . . . , sn) and t =
f(t1, . . . , tn) with siR

�ti. We proceed by a 2nd level induction on the proof that
s � s�. Let R denote the last rule used in this proof. We perform case analysis
on the nature of R.

R is a MSOS tyft rule. Suppose R concludes r �R r� from {ri �R
i r�i : i ∈ I}

with substitution σ. Let rs = dom(reads(�R)) and rsx = reads(�R)(x). Then
for each x, rsx[σ]R

�trsx. Since rsx is a pattern, we may apply condition 1. to
construct τ1 with trsx ⇒ rsx[τ

1] and for each x ∈ dom(τ1), σ(x)R�τ(x1). Also
r[σ]Rt and we may construct τ2 similarly, with t ⇒ r[τ2], dom(τ2) = vars(r),
and for all x ∈ vars(r), σ(x)R�τ2(x). Let τ = τ1 � τ2.

We now construct a sequence of substitutions τi. For each i we will show that:
τi ⊇ τ , τi ⊇ τj for j < i, (ri �R

i r�i)[τi] and for all x in dom(τi), σ(x)R
�τi(x). We

proceed by a 3rd level (ordinal) induction on i.

Let τ1i = τ ∪�
j<i τj . By 3rd level induction, for all x in dom(τ1i ), σ(x)R

�τ1i (x).

Since R� is a congruence ri[σ]R
�ri[τ1i (x)]. Also, reads(�R

i )[σ]R
�reads(�R

i )[τ
1
i ].

Also, (ri �R
i r�i)[σ]. By inductive hypothesis 2., we may find t�i and ��

i such that
ri[τ

1
i (x)]��

i t
�
i with r�i[σ]R

�t�i, reads(��
i) = reads(�R

i )[τ
1
i ] and writes(�R

i )[σ]R
�

writes(��
i). For each x in dom(writes(�i)), writes(�R

i )(x)[σ]R
�writes(��

i)(x). But
writes(�R

i )(x) is a pattern. We may apply condition 1. to find that writes(��
i)(x)⇒
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writes(�R
i )(x)[τ

2,x
i ]. Also, since r�i[σ]R

�t�i we may apply condition 1 to find τ2i
with t�i ⇒ r�i[τ

2
i ]. Let τi denote the disjoint union of τ

1
i , τ

2
i and each τ2,xi . Then

writes(��
i)(x) ⇒ writes(�R

i )(x)[τi] and t�i ⇒ r�i[τi]. By applying the saturation
rule (for t�i and each writes(��

i)(x)) we see that (ri �R
i r�i)[τi]. Also, for each x

in dom(τi), σi(x)R
�τi(x), as required.

Let τ � =
�

i∈I τi. We can apply the rule R to each (ri �R
i r�i)[τ

�] to conclude
that (r �R r�)[τ �]. Let t� = r�[τ �]. Then t ⇒ r[τ ] = r[τ �] �R [τ �]t�. Let �� =
�R [τ �]. Then by saturation t��t�. Also s�R�t� since t� = r�[τ �] and s� = r�[σ] and
for each x, σ(x)R�τ �(x). Also writes(�) = writes(�R [σ])R�writes(�R [τ �]) =
writes(��) and similarly reads(�) = reads(��).

R is a saturation rule. If R is a source-target saturation rule and s ⇒ s1 �
s2 ⇒ s� with sR�t we may apply the inductive hypothesis to each case sequentially,
constructing t1 and t2 such that t ⇒ t1 �� t2 ⇒ t� with s1R

�t1, s2R�t2, s�R�t�

and writes(�)R�writes(��) and reads(��) = trs . By applying the saturation rule,
we can conclude that t �� t� as required.

If R is a read-saturation rule under component x, then reads(�)(x) ⇒
reads(�1)(x) and s �1 s�. Since reads(�)(x)R�trs(x) by inductive hypothesis 2.
trs(x)⇒ p with reads(�1)(x)R

�p. Let trs � = trs[x �→ p]. Then trs �R�reads(�1).
Since sR�t by inductive hypothesis, exists ��

1 with t ��
1 t� with s�Rt� and

reads(��
1) = trs � and writes(�1)R

�writes(��
1). By applying the read-saturation

rule, we find that s �1 t� with s�R�t�, reads(�1) = trs and writes(�1) =
writes(��

1)R
�writes(�1) = writes(�) as required.

If R is a write-saturation rule under x, then s �1 s� and writes(�1)(x) ⇒
p and � = �1[x �→ p]. Since writes(�1)(x) ⇒ writes(�1)(x), by inductive
hypothesis 2. we must have pR�writes(�1)(x). By inductive hypothesis 2. again
since sRt, exists ��

1 with t ��
1 t� with s�Rt�, reads(��

1) = trs and writes(�1)R
�

writes(��
1). By applying the write saturation rule, t �� t� where ��=��

1 [x �→ p].
Now reads(��) = trs and writes(�)R�writes(��), since: for each y �= x we have
writes(�)(y) = writes(�1)(y)Rwrites(��

1)(y) = writes(��)(y); for x we have
writes(�)(x) = pR�writes(��)(x).

R is a built-in ⇒ rule. The cases of reflexivity, transitivity and precongruence
follow simply by induction as in Theorem 9, nothing that in such cases both �
and �� are ⇒ and so no labels are involved.

Reflexivity. Suppose s = t. If � =⇒ the case is trivial as trs = ∅ and we
can take t� = s�. Otherwise, we proceed by a 2nd level induction on the proof
that s � s�. Let R denote the last rule used in this proof.

R is a tyft rule. Suppose R concludes r �R r� from {ri �R
i r�i : i ∈ I} with

substitution σ. Let rs = dom(reads(�R)) and rsx = reads(�R)(x). Then for each
x, rsx[σ]R

�trsx. We may apply condition 1. to construct τ1 with trsx ⇒ rsx[τ
1]

and for each x ∈ dom(τ), σ(x)R�τ1(x). Let τ = τ1 ∪ σ|vars(r). By reflexivity of R�,
for each x ∈ dom(τ), σ(x)R�τ(x).

We now construct a sequence of substitutions τi. For each i we will show that:
τi ⊇ τ , τi ⊇ τj for j < i, (ri �R

i r�i)[τi] and for all x in dom(τi), σ(x)R
�τi(x). We

proceed by a 3rd level (ordinal) induction on i, and the proof is exactly as in the
congruence case above.
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Let τ � =
�

i∈I τi. We can apply the rule R to each (ri �R
i r�i)[τ

�] to con-
clude that (r �R r�)[τ �]. Let t� = r�[τ �] and ��=�R [τ �]. Then s = t �� t�.
Also s�R�t� since t� = r�[τ �] and s� = r�[σ] and for each x, σ(x)R�τ �(x). Also,
writes(�)R�writes(��) and reads(�) = reads(��).

R is a saturation rule. The saturation rules follow exactly as in the congruence
case (the proof of this particular subcase didn’t actually use congruence) in the
degenerate case that s = t.

Transitivity. Let s � s� and sR�rR�t and reads(�)R�trs . Then by inductive
hypothesis r �� r� with reads(��) = trs and writes(�)R�writes(��). By inductive
hypothesis again t ��� t� with reads(���) = trs and writes(��)R�writes(���) and
r�R�t�. Since R� is transitive, s�R�t� and writes(�)R�writes(���), and we are done.

Base relation. Suppose then that sRt and s � s�. Using the reflexivity
case above, since sR�s, we can find �� and s�� such that s �� s��, s�R�s��,
reads(��) = trs and writes(�)R�writes(��). Then, since sRt and R is an MSOS
bisimulation, we find that t ��� t� with s��Rt�, reads(���) = reads(��) = trs
and writes(��)Rwrites(���). Since s�R�s��R�t� and R� is transitive, we have s�R�t�.
Since writes(��)R�writes(���) and writes(���)Rwrites(��) we find that writes(��)
R� writes(�), as required. ��

Theorem 24 (Main text: Theorem 18). Consider an MSOS system T in
the well-founded MSOS tyft format. Let R be an MSOS bisimulation and R�

denote the reflexive transitive congruence closure of R. Then R� is an MSOS
bisimulation.

Proof. We first convert T into equivalent T � which is an explicit MSOS tyft
format following Proposition 16. We then show that R� is an MSOS bisimulation
by considering the three conditions in turn:

1. Follows by Proposition 17 point 2. taking trs = reads(L).
2. This condition is precisely Proposition 17 point 3., corresponding to point 2.
in the above proof taking � =�� =⇒.

3. If s = v(s1, . . . , sn)R
�t then s = r[σ] where r = v(x1, . . . , xn) and σ = {xi �→

sn}. By applying Proposition 17 point 1, t ⇒ r[τ ] with τ = {xi �→ ti} and
siR

�ti. Then t = v(t1, . . . , tn) as required. ��

Corollary 25. MSOS-bisimilarity is a congruence for specifications in the well-
founded MSOS tyft format.


