Appendix A Proofs of Congruence Results

Lemma 20 (Main text: Lemma 8). Let r be a pattern and σ a substitution with dom(σ) = vars(r). Let R' denote the reflexive congruence closure of a vcbisimulation R and suppose $r[\sigma]R't$. Then exists τ with dom(τ) = vars(r) such that $t \Rightarrow r[\tau]$ and for each x, $\sigma(x)R'\tau(x)$.

Proof. We proceed by induction on r. If r is a variable, we can set $\tau = \{r \mapsto t\}$ and we are done by reflexivity of \Rightarrow . Otherwise, $r = v(r_1, \ldots, r_n)$ for value constructor v and patterns r_1, \ldots, r_n . Then $r[\sigma] = v(r_1[\sigma], \ldots, r_n[\sigma])R't$.

If this holds for reflexivity reasons, we can set $\tau = \sigma$ and are done by reflexivity of R' and \Rightarrow . If this holds for congruence reasons, we must have $t = v(t_1, \ldots, t_n)$ with $r_i[\sigma] = r_i[\sigma|_{\mathsf{vars}(r_i)}]R't_i$ for $1 \le i \le n$. By applying the inductive hypothesis to each, we can find τ_i with $t_i \Rightarrow r_i[\tau_i]$ and $\sigma(x)R\tau_i(x)$ for each x. Let $\tau = \biguplus \tau_i$. By applying the precongruence rule, $t = v(t_1, \ldots, t_n) \Rightarrow v(r_1, \ldots, r_n)[\tau] = r[\tau]$ with $\sigma(x)R'\tau(x)$ for each x, as required.

If $r[\sigma] = v(r_1[\sigma], \ldots, r_n[\sigma])Rt$, then since R is a vc-bisimulation we must have $t \Rightarrow v(t_1, \ldots, t_n)$ with $r_i[\sigma] = r_i[\sigma_{\mathsf{vars}(r_i)}]R't_i$ for $1 \le i \le n$. By applying the inductive hypothesis to each, we find τ_i with $t_i \Rightarrow r_i[\tau_i]$ and $\sigma(x)R\tau_i(x)$ for each x. Let $\tau = \biguplus \tau_i$. By applying the precongruence rule, $v(t_1, \ldots, t_n) \Rightarrow$ $v(r_1, \ldots, r_n)[\tau] = r[\tau]$. By applying the transitivity rule, we see that $t \Rightarrow r[\tau]$ with $\sigma(x)R'\tau(x)$ for each x, as required. \Box

Theorem 21 (Main text: Theorem 9). If all rules in a value-computation transition system are defined in the value-added tyft format and well-founded, then vc-bisimilarity in that system is a congruence.

Proof. We first remove each value variable appearing in the rules. If a value variable v appears in a rule R, we may remove it by adding an additional rule for each value constructor f, replacing v for $f(x_1, \ldots, x_n)$ where $n = \operatorname{ar}(f)$ and x_i are fresh variables. The result is still in the value-added tyft format.

Let R be a vc-bisimulation, and let R' denote the reflexive congruence closure of R. We will show that R' is also a vc-bisimulation, and since R' contains R we can conclude that vc-bisimilarity is a congruence.

To show that R' is a bisimulation, we must show the three conditions in Definition 5. The third condition follows immediately from the above lemma: If $s = v(s_1, \ldots, s_n)R't$ then $s = r[\sigma]$ where $r = v(x_1, \ldots, x_n)$ and $\sigma = \{x_i \mapsto s_n\}$. By the lemma, $t \Rightarrow r[\tau]$ with $\tau = \{x_i \mapsto t_i\}$ and $s_i R't_i$. Then $t = v(t_1, \ldots, t_n)$ as required.

We next prove conditions (1) and (2) simultaneously, showing that $s \rightsquigarrow s'$ and sR't implies exists t' with $t \rightsquigarrow t'$ with s'R't' for any \rightsquigarrow of the form \Rightarrow or \xrightarrow{a} . We write \rightsquigarrow , possibly with subscripts, for variables ranging over such arrows. Note that by using either saturation or transitivity, the following is always admissible:

$$\frac{s \Rightarrow s_1}{s \rightsquigarrow s_2} \qquad \frac{s_2 \Rightarrow s'}{s \rightsquigarrow s'}$$

17

18 Churchill, Mosses

We will refer to this rule as 'generalised saturation'.

Suppose $s \rightsquigarrow s'$ with sR't. We proceed by induction on the proof that $s \rightsquigarrow s'$. We consider case analysis on sR't. If sRt then the step condition holds using the fact that R is a vc-bisimulation. If s = t then the step condition is trivial. In the final case, $s = f(s_1, \ldots, s_n)$ and $t = f(t_1, \ldots, t_n)$ with $s_iR't_i$. Let $s \rightsquigarrow s'$ be witnessed by a proof γ with immediate children $\{\gamma_i : i \in I\}$. Let \mathcal{R} denote the final rule used in γ under substitution σ .

Now \mathcal{R} is either one of the built in rules or a value-added tyft rule.

Tyft rule: Suppose \mathcal{R} concludes $r \rightsquigarrow r'$ from $\{u_i \rightsquigarrow_i u'_i : i \in I\}$ with $r[\sigma] = s$, $r'[\sigma] = s'$ and with γ_i a proof of $u_i[\sigma] \rightsquigarrow_i u'_i[\sigma]$. Since \mathcal{R} is in the value-added tyft format, we must have $r = f(r_1, \ldots, r_n)$ with $r_j[\sigma] = s_j$ where each r_j is a pattern.

Now, $s_j = r_j[\sigma|_{\mathsf{vars}(r_j)}]R't_j$ for $1 \leq j \leq n$. We apply the lemma for each such j and let τ denote the disjoint union of the resulting substitutions. Thus, $\sigma(x)R\tau(x)$ for each x in $\mathsf{vars}(r)$, and $t_j \Rightarrow r_j[\tau]$. By applying the precongruence rule at $f, t \Rightarrow r[\tau]$.

Well-foundedness ensures that variables in u'_i do not appear in u_j, u'_j for j < i. We will now show that for each $i \in I$ there exists a substitution τ_i such that $\tau_i \supseteq \tau$; for each j < i, $\tau_i \supseteq \tau_j$; $u_i[\tau_i] \rightsquigarrow_i u'_i[\tau_i]$; and for each $x \in \mathsf{dom}(\tau_i)$, $\sigma(x)R\tau_i(x)$.

We proceed by (ordinal) induction on *i*. Let $\tau_i^1 = \tau \cup \bigcup_{j < i} \tau_j$. Let $\tau_i^2 = \tau_i^1 \uplus \sigma|_{\mathsf{vars}(u_i) - \mathsf{dom}(\tau_i^1)}$. Now, we know that $s_i = u_i[\sigma]$. By the (inner) inductive hypothesis we see that for each $x \in \mathsf{dom}(\tau_i^2)$, $\tau_i^2(x)R'\sigma(x)$. Let $t_i = u_i[\tau_i^2]$. Then, since R' is a congruence, $s_i = u_i[\sigma]R'u_i[\tau_i^2] = t_i$. Since $s_i \rightsquigarrow_i s'_i$ we may apply the (outer) inductive hypothesis to see that there exists t'_i such that $t_i \rightsquigarrow_i t'_i$ with $s'_iR't'_i$. But also note that $s'_i = u'_i[\sigma]$ and u'_i is a pattern. By applying the lemma, we can find τ_i^3 such that $t'_i \Rightarrow u'_i[\tau_i^3]$ with $\sigma(x)R'\tau_i^3(x)$ for each $x \in \mathsf{dom}(\tau_i^3) = \mathsf{vars}(u'_i)$. Let $\tau_i = \tau_i^2 \uplus \tau_i^3$. Then $u_i[\tau_i] = u_i[\tau_i^2] = t_i \rightsquigarrow_i t'_i \Rightarrow u'_i[\tau_i]$. By applying generalised saturation, we see that $u_i[\tau_i] \sim_i u'_i[\tau_i]$. Since $\tau_i \supseteq \tau_j$ for j < i and $\forall x \in \mathsf{dom}(\tau_i)$, $\sigma(x)R'\tau_i(x)$, we are done.

Now, let $\tau' = \bigcup_{i \in I} \tau_i$. Then $\forall x \in \mathsf{dom}(\tau'), \sigma(x) R' \tau'(x)$. Also for each i, $u_i[\tau'] \rightsquigarrow_i u'_i[\tau']$. We may thus apply the rule \mathcal{R} and conclude that $r[\tau'] \rightsquigarrow r'[\tau']$. Since $t \Rightarrow r[\tau']$ we may apply generalised saturation and conclude that $t \rightsquigarrow t'$ where $t' = r'[\tau']$. We only need to show that s'Rt'. Well $s' = r'[\sigma]$ and $t' = r'[\tau']$, and $\sigma(x)R'\tau'(x)$ for each x. Since R' is a congruence, it follows that s'Rt'.

Built-in rule: If \mathcal{R} is the saturation rule then $\rightsquigarrow = \stackrel{a}{\rightarrow}$ and the premises of γ are $s \Rightarrow s_1, s_1 \stackrel{a}{\rightarrow} s_2$ and $s_2 \Rightarrow s'$. Since sR't and $s \Rightarrow s_1$, by inductive hypothesis $t \Rightarrow t_1$ with $s_1R't_1$. Then by inductive hypothesis $t_1 \stackrel{a}{\rightarrow} t_2$ with $s_2R't_2$. Finally, by inductive hypothesis $t_2 \Rightarrow t'$ with s'R't'. By applying the saturation rule, $t \stackrel{a}{\rightarrow} t'$ with s'R't', as required. The transitivity rule for \Rightarrow is entirely similar.

If \mathcal{R} is reflexivity for \Rightarrow , then s' = s and we can simply take t' = t.

If \mathcal{R} is the precongruence rule for \Rightarrow then we must have $s_i \Rightarrow s'_i$ with $s' = f(s'_1, \ldots, s'_n)$. Since $s_i R t_i$ we may apply the inductive hypothesis to see that $t_i \Rightarrow t'_i$ with $s'_i R' t'_i$. By applying the precongruence rule we see that $t \Rightarrow$

 $t' = f(t'_1, \ldots, t'_1)$. As R' is a precongruence, we find that s'R't', and the proof is complete.

We will now move to the MSOS setting. We use variables such as \rightsquigarrow to range over arrows \xrightarrow{L} and \Rightarrow . Define reads $(\xrightarrow{L}) = \text{reads}(L)$, reads $(\Rightarrow) = \emptyset$, writes $(\xrightarrow{L}) = \text{writes}(L)$ and writes $(\Rightarrow) = \emptyset$.

Proposition 22 (Main text: Proposition 16). Each well-founded MSOS tyft system is equivalent to one in the explicit MSOS tyft format.

Proof. Given an MSOS transition system T over label profile \mathcal{L} we first produce an equivalent set of rules removing all uses of label variables, exhibiting all information flow in labels explicitly. We modify each rule in T. First, let I denote the elements in $\mathsf{reads}(\mathcal{L}) \uplus \mathsf{writes}(\mathcal{L})$ not mentioned explicitly in that rule. Then:

- A variable ranging over arbitrary labels (e.g. '...') and not appearing in a composition is replaced by $\{l = x_l\}$ for fresh variables x_l for each $l \in I$.
- If the conclusion label ends with the empty composition ('-') it is replaced by $\{l = s_l\}$ for $l \in I$, where:
 - For $\mathbf{x} \in \mathcal{L}_{RO}$, $s_{\mathbf{x}}$ is a fresh variable.
 - For $\mathbf{x} \in \mathcal{L}_{RW}$, $s_{\mathbf{x}}$ and $s_{\mathbf{x}'}$ are the same fresh variable.
 - For $\mathbf{x} \in \mathcal{L}_{WO}, \, s_{\mathbf{x}'} = \iota_{\mathbf{x}}.$
- If the conclusion label ends with label variable composition $X_n \circ \ldots \circ X_1$ then we replace each X_j by $\{l = s_{l,j}\}$ and $X_n \circ \ldots \circ X_1$ by $\{l = s_l\}$ for $l \in I$ where:
 - For $\mathbf{x} \in \mathcal{L}_{RO}$, $s_{\mathbf{x}}$ and each $s_{\mathbf{x},j}$ are the same fresh variable.
 - For $\mathbf{x} \in \mathcal{L}_{RW}$, $s_{\mathbf{x}}$ and each $s_{\mathbf{x}',j}$ are fresh variables, $s_{\mathbf{x},1} = s_{\mathbf{x}}$, $s_{\mathbf{x},j+1} = s_{\mathbf{x}',j}$ and $s_{\mathbf{x}'} = s_{\mathbf{x}',n}$.
 - For $\mathbf{x} \in \mathcal{L}_{WO}$, each $s_{\mathbf{x}',j}$ is a fresh variable and $s_{\mathbf{x}'} = t_n$ where $t_0 = s_{\mathbf{x}',0}$ and $t_{j+1} = \bigcirc_{\mathbf{x}} (t_j, s_{\mathbf{x}',j+1})$.

The resulting system explicitly expresses the underlying mechanics of unobservability and composition, and does so in the MSOS tyft format. $\hfill \Box$

Proposition 23 (Main text: Proposition 17). Consider a MSOS specification in explicit MSOS tyft format. Let R be an MSOS bisimulation over the generated transition system and let R' denote the reflexive transitive congruence closure of R. Suppose sR't. Then:

- 1. If $s = r[\sigma]$ with dom $(\sigma) = vars(r)$ and r is a pattern then exists τ with dom $(\tau) = vars(r)$ such that $t \Rightarrow r[\tau]$ with $\sigma(x)R'\tau(x)$ for each $x \in vars(r)$.
- 2. If $s \rightsquigarrow s'$ and $\operatorname{reads}(\rightsquigarrow)R'$ trs then exists \rightsquigarrow', t' such that $t \rightsquigarrow' t'$, $\operatorname{reads}(\rightsquigarrow') = trs$, $\operatorname{writes}(\rightsquigarrow')R'$ writes (\rightsquigarrow') and $\rightsquigarrow' = \Rightarrow$ iff $\rightsquigarrow = \Rightarrow$.

Proof. We first remove each value variable appearing in the rules. If a value variable v appears in a rule R, we may remove it by adding an additional rule for each value constructor f, replacing v for $f(x_1, \ldots, x_n)$ where $n = \operatorname{ar}(f)$ and x_i are fresh variables. The result is still in the MSOS tyft format.

20 Churchill, Mosses

We then proceed by simultaneous induction on R'. We first show condition 1. **Reflexivity**. If $r[\sigma] = t$ then we can take $\tau = \sigma$ and the result follows by reflexivity of \Rightarrow and R'.

Transitivity. If $r[\sigma]R'sR't$ then we may apply inductive hypothesis 1. to construct ρ with $dom(\rho) = dom(\sigma) = vars(r)$ with $s \Rightarrow r[\rho]$ and for each x, $\sigma(x)R'\rho(x)$. Since sR't and $s \Rightarrow r[\rho]$ by applying inductive hypothesis 2. it follows that $t \Rightarrow t'$ for some $r[\rho]R't'$. By inductive hypothesis 1., exists τ with $dom(\tau) = vars(r)$ and $t' \Rightarrow r[\tau]$ and for each $x \ \rho(x)R'\tau(x)$. By applying the transitivity rule for \Rightarrow we see that $t \Rightarrow r[\tau]$. Finally, for each $x \in vars(r)$, $\sigma(x)R'\rho(x)R'\tau(x)$ and since R' is transitive, $\sigma(x)R'\tau(x)$ as required.

Congruence. If r is a variable, we can set $\tau = \{r \mapsto t\}$ and we are done by reflexivity of \Rightarrow . Otherwise, $r = v(r_1, \ldots, r_n)$ for value constructor v and patterns r_1, \ldots, r_n . Then $r[\sigma] = v(r_1[\sigma], \ldots, r_n[\sigma])R't$. Since sR't for congruence reasons, we must have $t = v(t_1, \ldots, t_n)$ with $r_i[\sigma] = r_i[\sigma|_{\mathsf{vars}(r_i)}]R't_i$ for $1 \le i \le n$. By applying inductive hypothesis 1. to each, we see that $t_i \Rightarrow r_i[\tau_i]$ with $\sigma(x)R'\tau_i(x)$ for each x. Let $\tau = \biguplus \tau_i$. By applying the precongruence rule, $t = v(t_1, \ldots, t_n) \Rightarrow v(r_1, \ldots, r_n)[\tau] = r[\tau]$ with $\sigma(x)R'\tau(x)$ for each x, as required.

Base relation. If r is a variable, we can set $\tau = \{r \mapsto t\}$ and we are done by reflexivity of \Rightarrow . Otherwise, if $r[\sigma] = v(r_1[\sigma], \ldots, r_n[\sigma])Rt$, then since R is a MSOS bisimulation we must have $t \Rightarrow v(t_1, \ldots, t_n)$ with $r_i[\sigma] = r_i[\sigma_{\mathsf{vars}(r_i)}]Rt_i$ for $1 \le i \le n$. By applying inductive hypothesis 1. to each, we see that $t_i \Rightarrow r_i[\tau_i]$ with $\sigma(x)R'\tau_i(x)$ for each x. Let $\tau = \biguplus \tau_i$. By applying the precongruence rule, $v(t_1, \ldots, t_n) \Rightarrow v(r_1, \ldots, r_n)[\tau] = r[\tau]$. By applying the transitivity rule, we see that $t \Rightarrow r[\tau]$ with $\sigma(x)R'\tau(x)$ for each x, as required.

We next show condition **2**.

Congruence. We now consider the case that $s = f(s_1, \ldots, s_n)$ and $t = f(t_1, \ldots, t_n)$ with $s_i R' t_i$. We proceed by a 2nd level induction on the proof that $s \rightsquigarrow s'$. Let \mathcal{R} denote the last rule used in this proof. We perform case analysis on the nature of \mathcal{R} .

 \mathcal{R} is a MSOS tyft rule. Suppose \mathcal{R} concludes $r \rightsquigarrow^{\mathcal{R}} r'_{1}$ from $\{r_{i} \rightsquigarrow^{\mathcal{R}}_{i} r'_{i} : i \in I\}$ with substitution σ . Let $rs = \mathsf{dom}(\mathsf{reads}(\rightsquigarrow^{\mathcal{R}}))$ and $rs_{x} = \mathsf{reads}(\rightsquigarrow^{\mathcal{R}})(x)$. Then for each $x, rs_{x}[\sigma]R'trs_{x}$. Since rs_{x} is a pattern, we may apply condition 1. to construct τ^{1} with $trs_{x} \Rightarrow rs_{x}[\tau^{1}]$ and for each $x \in \mathsf{dom}(\tau^{1}), \sigma(x)R'\tau(x^{1})$. Also $r[\sigma]Rt$ and we may construct τ^{2} similarly, with $t \Rightarrow r[\tau^{2}], \mathsf{dom}(\tau^{2}) = \mathsf{vars}(r)$, and for all $x \in \mathsf{vars}(r), \sigma(x)R'\tau^{2}(x)$. Let $\tau = \tau^{1} \uplus \tau^{2}$.

We now construct a sequence of substitutions τ_i . For each *i* we will show that: $\tau_i \supseteq \tau, \tau_i \supseteq \tau_j$ for $j < i, (r_i \rightsquigarrow_i^{\mathcal{R}} r'_i)[\tau_i]$ and for all x in dom $(\tau_i), \sigma(x)R'\tau_i(x)$. We proceed by a 3rd level (ordinal) induction on *i*.

Let $\tau_i^1 = \tau \cup \bigcup_{j < i} \tau_j$. By 3rd level induction, for all x in dom (τ_i^1) , $\sigma(x)R'\tau_i^1(x)$. Since R' is a congruence $r_i[\sigma]R'r_i[\tau_i^1(x)]$. Also, reads $(\rightsquigarrow_i^{\mathcal{R}})[\sigma]R'$ reads $(\rightsquigarrow_i^{\mathcal{R}})[\tau_i^1]$. Also, $(r_i \rightsquigarrow_i^{\mathcal{R}} r'_i)[\sigma]$. By inductive hypothesis 2., we may find t'_i and \rightsquigarrow'_i such that $r_i[\tau_i^1(x)] \rightsquigarrow'_i t'_i$ with $r'_i[\sigma]R't'_i$, reads $(\rightsquigarrow'_i) =$ reads $(\rightsquigarrow_i^{\mathcal{R}})[\tau_i^1]$ and writes $(\rightsquigarrow_i^{\mathcal{R}})[\sigma]R'$ writes (\rightsquigarrow'_i) . For each x in dom(writes (\rightsquigarrow_i)), writes $(\rightsquigarrow_i^{\mathcal{R}})(x)[\sigma]R'$ writes $(\rightsquigarrow'_i)(x)$. But writes $(\rightsquigarrow_i^{\mathcal{R}})(x)$ is a pattern. We may apply condition 1. to find that writes $(\rightsquigarrow'_i)(x) \Rightarrow$ writes $(\rightsquigarrow_i^{\mathcal{R}})(x)[\tau_i^{2,x}]$. Also, since $r'_i[\sigma]R't'_i$ we may apply condition 1 to find τ_i^2 with $t'_i \Rightarrow r'_i[\tau_i^2]$. Let τ_i denote the disjoint union of τ_i^1 , τ_i^2 and each $\tau_i^{2,x}$. Then writes $(\rightsquigarrow_i')(x) \Rightarrow$ writes $(\rightsquigarrow_i^{\mathcal{R}})(x)[\tau_i]$ and $t'_i \Rightarrow r'_i[\tau_i]$. By applying the saturation rule (for t'_i and each writes $(\rightsquigarrow_i')(x)$) we see that $(r_i \rightsquigarrow_i^{\mathcal{R}} r'_i)[\tau_i]$. Also, for each x in dom (τ_i) , $\sigma_i(x)R'\tau_i(x)$, as required.

Let $\tau' = \bigcup_{i \in I} \tau_i$. We can apply the rule \mathcal{R} to each $(r_i \rightsquigarrow_i^{\mathcal{R}} r'_i)[\tau']$ to conclude that $(r \rightsquigarrow_i^{\mathcal{R}} r')[\tau']$. Let $t' = r'[\tau']$. Then $t \Rightarrow r[\tau] = r[\tau'] \rightsquigarrow_i^{\mathcal{R}} [\tau']t'$. Let $\rightsquigarrow' = \\ \rightsquigarrow_i^{\mathcal{R}} [\tau']$. Then by saturation $t \rightsquigarrow't'$. Also s'R't' since $t' = r'[\tau']$ and $s' = r'[\sigma]$ and for each $x, \sigma(x)R'\tau'(x)$. Also writes $(\rightsquigarrow) =$ writes $(\rightsquigarrow_i^{\mathcal{R}} [\sigma])R'$ writes $(\rightsquigarrow_i^{\mathcal{R}} [\tau']) =$ writes (\rightsquigarrow') and similarly reads $(\rightsquigarrow) =$ reads (\rightsquigarrow') .

 \mathcal{R} is a saturation rule. If \mathcal{R} is a source-target saturation rule and $s \Rightarrow s_1 \rightsquigarrow s_2 \Rightarrow s'$ with sR't we may apply the inductive hypothesis to each case sequentially, constructing t_1 and t_2 such that $t \Rightarrow t_1 \rightsquigarrow' t_2 \Rightarrow t'$ with $s_1R't_1, s_2R't_2, s'R't'$ and writes(\rightsquigarrow)R'writes(\rightsquigarrow') and reads(\rightsquigarrow') = trs. By applying the saturation rule, we can conclude that $t \rightsquigarrow' t'$ as required.

If \mathcal{R} is a read-saturation rule under component x, then $\mathsf{reads}(\rightsquigarrow)(x) \Rightarrow \mathsf{reads}(\rightsquigarrow_1)(x)$ and $s \rightsquigarrow_1 s'$. Since $\mathsf{reads}(\rightsquigarrow)(x)R'trs(x)$ by inductive hypothesis 2. $trs(x) \Rightarrow p$ with $\mathsf{reads}(\sim_1)(x)R'p$. Let $trs' = trs[x \mapsto p]$. Then $trs'R'\mathsf{reads}(\sim_1)$. Since sR't by inductive hypothesis, exists \rightsquigarrow'_1 with $t \rightsquigarrow'_1 t'$ with s'Rt' and $\mathsf{reads}(\sim'_1) = trs'$ and $\mathsf{writes}(\sim_1)R'\mathsf{writes}(\sim'_1)$. By applying the read-saturation rule, we find that $s \rightsquigarrow_1 t'$ with s'R't', $\mathsf{reads}(\sim_1) = trs$ and $\mathsf{writes}(\sim_1) =$ $\mathsf{writes}(\sim'_1)R'\mathsf{writes}(\sim_1) = \mathsf{writes}(\sim)$ as required.

If \mathcal{R} is a write-saturation rule under x, then $s \rightsquigarrow_1 s'$ and writes $(\rightsquigarrow_1)(x) \Rightarrow p$ and $\rightsquigarrow = \rightsquigarrow_1[x \mapsto p]$. Since writes $(\rightsquigarrow_1)(x) \Rightarrow$ writes $(\rightsquigarrow_1)(x)$, by inductive hypothesis 2. we must have pR'writes $(\rightsquigarrow_1)(x)$. By inductive hypothesis 2. again since sRt, exists \rightsquigarrow'_1 with $t \rightsquigarrow'_1 t'$ with s'Rt', reads $(\leadsto'_1) = trs$ and writes $(\rightsquigarrow_1)R'$ writes (\rightsquigarrow'_1) . By applying the write saturation rule, $t \rightsquigarrow' t'$ where $\leadsto' = \leadsto'_1 [x \mapsto p]$. Now reads $(\leadsto') = trs$ and writes $(\rightsquigarrow)R'$ writes (\leadsto') , since: for each $y \neq x$ we have writes $(\rightsquigarrow)(y) =$ writes $(\rightsquigarrow_1)(y)R$ writes $(\leadsto'_1)(y) =$ writes $(\leadsto')(y)$; for x we have writes $(\rightsquigarrow)(x) = pR'$ writes $(\leadsto')(x)$.

 \mathcal{R} is a built-in \Rightarrow rule. The cases of reflexivity, transitivity and precongruence follow simply by induction as in Theorem 9, nothing that in such cases both \rightsquigarrow and \rightsquigarrow' are \Rightarrow and so no labels are involved.

Reflexivity. Suppose s = t. If $\rightsquigarrow = \Rightarrow$ the case is trivial as $trs = \emptyset$ and we can take t' = s'. Otherwise, we proceed by a 2nd level induction on the proof that $s \rightsquigarrow s'$. Let \mathcal{R} denote the last rule used in this proof.

 \mathcal{R} is a tyft rule. Suppose \mathcal{R} concludes $r \rightsquigarrow^{\mathcal{R}} r'$ from $\{r_i \rightsquigarrow^{\mathcal{R}}_i r'_i : i \in I\}$ with substitution σ . Let $rs = \operatorname{dom}(\operatorname{reads}(\rightsquigarrow^{\mathcal{R}}))$ and $rs_x = \operatorname{reads}(\rightsquigarrow^{\mathcal{R}})(x)$. Then for each $x, rs_x[\sigma]R'trs_x$. We may apply condition 1. to construct τ^1 with $trs_x \Rightarrow rs_x[\tau^1]$ and for each $x \in \operatorname{dom}(\tau), \sigma(x)R'\tau^1(x)$. Let $\tau = \tau^1 \cup \sigma|_{\operatorname{vars}(r)}$. By reflexivity of R', for each $x \in \operatorname{dom}(\tau), \sigma(x)R'\tau(x)$.

We now construct a sequence of substitutions τ_i . For each *i* we will show that: $\tau_i \supseteq \tau, \tau_i \supseteq \tau_j$ for $j < i, (r_i \rightsquigarrow_i^{\mathcal{R}} r'_i)[\tau_i]$ and for all x in dom $(\tau_i), \sigma(x)R'\tau_i(x)$. We proceed by a 3rd level (ordinal) induction on *i*, and the proof is exactly as in the congruence case above.

22 Churchill, Mosses

Let $\tau' = \bigcup_{i \in I} \tau_i$. We can apply the rule \mathcal{R} to each $(r_i \rightsquigarrow_i^{\mathcal{R}} r'_i)[\tau']$ to conclude that $(r \rightsquigarrow^{\mathcal{R}} r')[\tau']$. Let $t' = r'[\tau']$ and $\rightsquigarrow' = \rightsquigarrow^{\mathcal{R}} [\tau']$. Then $s = t \rightsquigarrow' t'$. Also s'R't' since $t' = r'[\tau']$ and $s' = r'[\sigma]$ and for each $x, \sigma(x)R'\tau'(x)$. Also, writes $(\rightsquigarrow)R'$ writes (\rightsquigarrow') and reads $(\rightsquigarrow) =$ reads (\rightsquigarrow') .

 \mathcal{R} is a saturation rule. The saturation rules follow exactly as in the congruence case (the proof of this particular subcase didn't actually use congruence) in the degenerate case that s = t.

Transitivity. Let $s \rightsquigarrow s'$ and sR'rR't and $reads(\rightsquigarrow)R'trs$. Then by inductive hypothesis $r \rightsquigarrow' r'$ with $reads(\rightsquigarrow') = trs$ and $writes(\rightsquigarrow)R'writes(\rightsquigarrow')$. By inductive hypothesis again $t \rightsquigarrow'' t'$ with $reads(\rightsquigarrow'') = trs$ and $writes(\rightsquigarrow')R'writes(\rightsquigarrow'')$ and r'R't'. Since R' is transitive, s'R't' and $writes(\rightsquigarrow)R'writes(\rightsquigarrow'')$, and we are done.

Base relation. Suppose then that sRt and $s \rightsquigarrow s'$. Using the reflexivity case above, since sR's, we can find \rightsquigarrow' and s'' such that $s \rightsquigarrow' s''$, s'R's'', reads $(\rightsquigarrow') = trs$ and writes $(\rightsquigarrow)R'$ writes (\rightsquigarrow') . Then, since sRt and R is an MSOS bisimulation, we find that $t \rightsquigarrow'' t'$ with s''Rt', reads $(\rightsquigarrow'') = \text{reads}(\rightsquigarrow') = trs$ and writes $(\rightsquigarrow')R$ writes (\rightsquigarrow'') . Since s'R's''R't' and R' is transitive, we have s'R't'. Since writes $(\rightsquigarrow')R'$ writes (\rightsquigarrow'') and writes $(\rightsquigarrow'')R$ writes (\rightsquigarrow'') we find that writes $(\rightsquigarrow'')R'$

Theorem 24 (Main text: Theorem 18). Consider an MSOS system T in the well-founded MSOS tyft format. Let R be an MSOS bisimulation and R' denote the reflexive transitive congruence closure of R. Then R' is an MSOS bisimulation.

Proof. We first convert T into equivalent T' which is an explicit MSOS tyft format following Proposition 16. We then show that R' is an MSOS bisimulation by considering the three conditions in turn:

- 1. Follows by Proposition 17 point 2. taking trs = reads(L).
- 2. This condition is precisely Proposition 17 point 3., corresponding to point 2. in the above proof taking $\rightsquigarrow = \rightsquigarrow' = \Rightarrow$.
- 3. If $s = v(s_1, \ldots, s_n)R't$ then $s = r[\sigma]$ where $r = v(x_1, \ldots, x_n)$ and $\sigma = \{x_i \mapsto s_n\}$. By applying Proposition 17 point 1, $t \Rightarrow r[\tau]$ with $\tau = \{x_i \mapsto t_i\}$ and $s_i R't_i$. Then $t = v(t_1, \ldots, t_n)$ as required.

Corollary 25. MSOS-bisimilarity is a congruence for specifications in the well-founded MSOS tyft format.