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Bisimulation

I Bisimilarity provides notions of behavioural equivalence for
operational semantics.

I Defined for transition relation s
`−→ t.

I If s and t are (strongly) bisimilar, they can match each step
and remain bisimilar:

s ≈ t and s
`−→ s ′ implies ∃t ′ with t

`−→ t ′ and s ′ ≈ t ′.
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Congruence

I Any notion of equivalence should be a congruence:

For each f , s1 ≈ t1, . . . , sn ≈ tn implies
f (s1, . . . , sn) ≈ f (t1, . . . , tn)

‘one can replace a term by an equivalent term in a larger
context, and the overall context remains equivalent’

I Enables compositional reasoning

But:

I Bisimilarity is not guaranteed to be a congruence!
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Congruence formats

I Transition systems for operational semantics can be defined
inductively by SOS rules (Plotkin)

I There are known formats for such rules which guarantee that
bisimulation is a congruence. (GSOS, tyft/tyxt, . . . )

{ti
`i−→ yi : i ∈ I}

f (x1, . . . , xn)
`−→ t

x
`−→ x ′

x‖y `−→ x ′‖y
y

`−→ y ′

x‖y `−→ x‖y ′
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I Well-suited to process algebras but not to programming
languages:

I Programming language terms can compute values
I Programming language transition systems generally have

auxiliary entities (stores, environments, . . . ) which can
contain arbitrary terms

ρ[x 7→ v ] ` s → s ′

ρ ` apply(λx .s, v)→ apply(λx .s ′, v)

ρ ` apply(λx .v1, v2)→ v1

⇒ not in congruence formats!
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Contribution

What about bisimulation congruence for programming languages?

In this work we describe a new congruence format which:

I can deal adequately with computed values
I can deal adequately with auxiliary entities

I ⇒ higher-order bisimulation

I scales up to real programming languages (supports MSOS)
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Bisimulation for Value-computation Systems
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Values and Computations

We distinguish between value terms and computational terms.
“Values are, computations do” (Levy)

Values:

I Booleans, integers, function abstractions, ...

Computations:

I Expressions, commands, declarations, processes, programs, ...
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Values and computations

Values can be inspected, computations have behaviour.

I Any observing context must be able to distinguish values e.g.
true and false.

I But they cannot interrogate the structure of arbitrary
computational terms:

I otherwise equivalence would reduce to syntactic identity.

Algebraic signature, values determined by a set of value
constructors

(true, false, thunk(−), ...)
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Value-computation Bisimulation

A symmetric relation R satisfying the usual bisimulation step
conditions, plus:

I If v(s1, . . . , sn) R v1 with v ∈ VC , then v1 = v(t1, . . . , tn)
with si R ti for 1 ≤ i ≤ n.

Bisimilar values have the same head constructor and bisimilar
arguments.

Congruence format:

I Arguments of conclusion source, targets of premises must be
patterns — a term made of variables and value constructors.

I Generalisation of tyft format (Groote, Vaandrager)

{ti
`i−→ ui : i ∈ I}

f (w1, . . . ,wn)
`−→ t
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Higher-order Bisimulation for MSOS
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Auxiliary entities

I For programming languages, we can place auxiliary entities
(store etc) in the label – indexed record of terms.

Examples:

I env, an environment mapping identifiers to the values they
are bound to (‘read’ component)

I exc, which signals whether an exception has occurred, and if
so which (‘write’ component)

I store, a mapping from reference cells to their current value
(changeable – ‘read’ + ‘write’ component)

I . . .
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Examples

bound(x)
{env=ρ,−}−−−−−−−→ lookup(ρ, x)

y
{exc′=nil,...}−−−−−−−−→ y ′

catch(y , f )
{exc′=nil,...}−−−−−−−−→ catch(y ′, f )

y
{env=update(ρ,x,v),...}−−−−−−−−−−−−−−→ y ′

let(x , v , y)
{env=ρ,...}−−−−−−−→ let(x , v , y ′)

y
{exc′=exc(e),...}−−−−−−−−−−→ y ′

catch(y , f )
{exc′=nil,...}−−−−−−−−→ apply(f , e)

throw(e)
{exc′=exc(e),−}−−−−−−−−−−→ stuck catch(v , f )

{−}−−→ v

‘. . . ’ is a variable ranging over the ‘rest of the label’

‘–’ provides defaults for unmentioned entities

I lookup is a computational constructor for maps.

I update, nil, exc are value constructors.

I NB: information flows between source, label components,
target
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Higher-order bisimulation

We wish to ensure that bisimulation is a congruence.

If

s ≈ t is to imply throw(s) ≈ throw(t)

we must allow label components to vary up to bisimulation in the
‘step’ (a higher-order bisimulation).
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Bisimulation for MSOS

As before, except step condition becomes:

I If s R t and s
`−→ s ′ then ∃t ′, `′ with s ′ R t ′, t

`′−→ t ′,
reads(`′) = reads(`) and writes(`) R writes(`′).

Write components in the label can vary up to bisimulation

Congruence format: (MSOS-tyft)

I In the conclusion, readable components must be patterns

I In premises, writeable components must be patterns

Requires lemma:

I ‘One can replace inputs (read components) for bisimilar ones
to yield bisimilar outputs (write components)’

∼ applicative bisimulation (Howe)
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Conclusions

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values



Expressivity

MSOS-tyft format expressive enough to model Caml Light:

I Higher-order functions, imperative state, exceptions, mutual
recursion, pattern matching, . . .

⇒ Equivalences are valid in arbitrary program contexts

[We translate Caml Light programs into reusable constructs,
yielding a component-based formal semantics of the language.]
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Further Directions

Theory:

I Multisorted signatures

I Bisimulations parametrised on read components (env, . . . )
cf. state-based bisimilarity (Mousavi)

I Negative premises

Practice:

I Larger language examples, e.g. C#, Java, . . .
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Conclusions

We have:

I defined a bisimulation congruence format dealing with
computed values and auxiliary entities

I which supports a higher-order notion of bisimulation and
Modular SOS

I and is expressive enough to treat a real world programming
language.

Thank You.
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Appendix

(some more detailed slides)
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Value-computation signatures

Definition
A value-computation signature consists of a set of constructors C ,
each with an arity in N, and a set of value constructors VC ⊆ C .
We let T denote the set of terms, and V ⊆ T the set of value
terms whose outermost constructor is in VC .

I Constants like true,5,... are nullary value constructors, and
hence values.

I cond is not a value constructor, so cond(B,C ,D) is never a
value.

I thunk is a value constructor that can wrap an arbitrary
computation into a value.
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Value-computation transition systems

I Fix a set of labels L.

I We wish to define our relation s
l−→ t with s, t ∈ T and l ∈ L

to model computations. We define this via inductive rules.

I It is useful to introduce an additional internal relation for
silent, context-insensitive steps which we write as ⇒. This
relation is reflexive, transitive and a precongruence.

x ⇒ x
x1 ⇒ y1 · · · xn ⇒ yn
f (x1, . . . , yn)⇒ f (x1, . . . , yn)

x ⇒ y y ⇒ z
x ⇒ z

x ⇒ x1 x1
l−→ y1 y1 ⇒ y

x
l−→ y
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Value-computation Bisimulation

Definition
A value-computation bisimulation over a given value-computation
transition system (Σ, L,→,⇒) is a symmetric relation
R ⊆ TΣ × TΣ such that

I If s R t and s
l−→ s ′ then ∃t ′ with s ′ R t ′ and t

l−→ t ′.

I If s R t and s ⇒ s ′ then ∃t ′ with s ′ R t ′ and t ⇒ t ′.

I If v(s1, . . . , sn) R t with v ∈ VC , then t ⇒ v(t1, . . . , tn) with
si R ti for 1 ≤ i ≤ n.

Two terms s and t are value-computation bisimilar, written
s ≈vc t, if there exists a value-computation bisimulation R with
s R t.
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Congruence Format

{si  i ui : i ∈ I}
f (w1, . . . ,wn) t

(Each  , i ∈ {⇒} ∪ {
a−→: a ∈ L}.)

I Adaptation of the tyft format [?]

I But ui and wi generalised from variables to patterns — a term
made of variables and value constructors.

I Allows rules such as seq(skip, s)⇒ s and force(thunk(s))⇒ s.

For rules in this value-added tyft format, vc-bisimilarity is a
congruence.
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Composition and Unobservability

For each label component, there are default ‘unobservable’ labels
− for unmentioned components.

print(x)
{output′=x ,env=ρ,store=σ,store′=σ,exc=nil}−−−−−−−−−−−−−−−−−−−−−−−−−−−→ skip

Labels may also be composed:

seq(assign(y, 6), assign(x, 5))
{store=σ,store′=update(σ,y,6),−}−−−−−−−−−−−−−−−−−−−−−→ seq(skip, assign(x, 5))⇒

assign(x, 5)
{store=σ1,store

′=update(σ1,x,5),−}−−−−−−−−−−−−−−−−−−−−−−→ skip

seq(assign(y, 6), assign(x, 5))
{store=σ,store′=σ[x 7→6,y 7→5],−}−−−−−−−−−−−−−−−−−−−−−→ ∗skip

I Ensures e.g. single-threaded store.

I Each label component is a category.
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Bisimulation for MSOS

Definition
Given a value-computation transition system (Σ,L(TΣ),→,⇒)
generated from an MSOS specification, an MSOS bisimulation is a
symmetric relation R ⊆ T × T such that:

I If s R t and s
L−→ s ′ then ∃t ′, L′ with s ′ R t ′, t

L′−→ t ′,
reads(L′) = reads(L) and writes(L) R writes(L′).

I If s R t and s ⇒ s ′ then ∃t ′ with s ′ R t ′ and t ⇒ t ′.

I If v(s1, . . . , sn) R t with v ∈ VC , then t ⇒ v(t1, . . . , tn) with
si R ti for 1 ≤ i ≤ n.

Two terms s and t are MSOS bisimilar, written s ≈msos t, if there
exists an MSOS bisimulation R with s R t.
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MSOS tyft format

{si  i ui : i ∈ I}
f (w1, . . . ,wn) t

(Each  , i ∈ {⇒} ∪ {
L−→}.)

For labels L:

I In the conclusion  , readable components must be patterns
{l = u, l′ = t, . . .}

I In premises  i , writeable components must be patterns
{l = t, l′ = u, . . .}

I We allow composition and unobservability in conclusion
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Bisimilarity-preservation for unprimed entities

To show congruence of bisimilarity for MSOS tyft, we need:

‘One can replace read components (environment, initial store, . . . )
for bisimilar ones to yield bisimilar write components (final store,
thrown exceptions, . . . ) and target term’ ∼ applicative
bisimulation (Howe)

I If s
L−→ s ′ and reads(L) ≈ trs then:

∃ s ′′, tws such that s ′ ≈ s ′′, writes(L) ≈ tws and s
L′−→ s ′′ for

reads(L′) = trs and writes(L′) = tws.

Theorem
MSOS-bisimilarity is a congruence for the MSOS tyft format.
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throw(x)
{exc′=exc(x),−}−−−−−−−−−−→ stuck

x
{exc′=nil,...}−−−−−−−−→ x ′

catch(x , y , z)
{exc′=nil,...}−−−−−−−−→ catch(x ′, y , z)

catch(v , x , z)⇒ v
x
{exc′=exc(x1),...}−−−−−−−−−−−→ x ′

catch(x , y , z)
{exc′=nil,...}−−−−−−−−→ let(y , x1, z)

y
{...}−−−→ y ′

assign(x , y)
{...}−−−→ assign(x , y ′)

assign(x , v)
{store=σ,store′=update(σ,x,v),−}−−−−−−−−−−−−−−−−−−−−−→ skip

deref(x)
{store=σ,−}−−−−−−−−→ lookup(σ, x)

I assign and deref are constructors for imperative store.

I throw and catch for exception handling.

NB: ‘–’ provides defaults for the ‘rest of the label’

(e.g. store = store′, exc′ = nil)
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Application and Abstraction

x
{...}−−→ x ′

apply(x , y)
{...}−−→ apply(x ′, y)

y
{...}−−→ y ′

apply(v , y)
{...}−−→ apply(v , y ′)

y
{env=update(ρ,x ,v),...}−−−−−−−−−−−−−−→ y ′

apply(abs(x , y , ρ), v)
{env=ρ1,...}−−−−−−−→

apply(abs(x , y ′, ρ), v)

apply(abs(x , v1, ρ), v2)⇒ v1

lambda(x , y)
{env=ρ,...}−−−−−−−→ abs(x , y , ρ)
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