Modular Bisimulation Theory for Computations and Values

Martin Churchill and Peter D. Mosses Swansea University, UK

> FoSSaCS, Rome March 2013

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Part of the project:

PLanCompS http://www.plancomps.org

EPSRC-funded, 2011-2015 {Swansea, Royal Holloway, City}, UK

Scaling up formal semantics to real-world programming languages

Upcoming workshop: Scalable Language Specification (SLS13) with project partner Microsoft Research Cambridge

- Here we work on equivalence for operational semantics:
 - bisimulation congruence formats

- Bisimilarity provides notions of behavioural equivalence for operational semantics.
- Defined for transition relation $s \xrightarrow{\ell} t$.
- If s and t are (strongly) bisimilar, they can match each step and remain bisimilar:

$$spprox t$$
 and $s\stackrel{\ell}{ o}s'$ implies $\exists t'$ with $t\stackrel{\ell}{ o}t'$ and $s'pprox t'$.

> Any notion of equivalence should be a **congruence**:

For each f, $s_1 \approx t_1, \ldots, s_n \approx t_n$ implies $f(s_1, \ldots, s_n) \approx f(t_1, \ldots, t_n)$

'one can replace a term by an equivalent term in a larger context, and the overall context remains equivalent'

Enables compositional reasoning

But:

Bisimilarity is not guaranteed to be a congruence!

Congruence formats

- Transition systems for operational semantics can be defined inductively by SOS rules (Plotkin)
- There are known formats for such rules which guarantee that bisimulation is a congruence. (GSOS, tyft/tyxt, ...)

$$\frac{\{t_i \xrightarrow{\ell_i} y_i : i \in I\}}{f(x_1, \dots, x_n) \xrightarrow{\ell} t}$$
$$\frac{x \xrightarrow{\ell} x'}{x \| y \xrightarrow{\ell} x' \| y} \qquad \frac{y \xrightarrow{\ell} y'}{x \| y \xrightarrow{\ell} x \| y'}$$

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

(ロ) (同) (E) (E) (E)

- Well-suited to process algebras but not to programming languages:
 - Programming language terms can compute values
 - Programming language transition systems generally have auxiliary entities (stores, environments, ...) which can contain arbitrary terms

イロト イボト イヨト イヨト 二日

- Well-suited to process algebras but not to programming languages:
 - Programming language terms can compute values
 - Programming language transition systems generally have auxiliary entities (stores, environments, ...) which can contain arbitrary terms

$$\rho[x \mapsto v] \vdash s \to s'$$

$$\rho \vdash \mathsf{apply}(\lambda x.s, v) \to \mathsf{apply}(\lambda x.s', v)$$

$$\rho \vdash \mathsf{apply}(\lambda x.v_1, v_2) \to v_1$$

 \Rightarrow not in congruence formats!

What about bisimulation congruence for programming languages?

In this work we describe a new congruence format which:

- can deal adequately with computed values
- can deal adequately with auxiliary entities
 - \Rightarrow higher-order bisimulation
- scales up to real programming languages (supports MSOS)

イロト イポト イラト イラト 一日

BISIMULATION FOR VALUE-COMPUTATION SYSTEMS

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

We distinguish between value terms and computational terms. "Values are, computations do" (Levy)

Values:

Booleans, integers, function abstractions, …

Computations:

Expressions, commands, declarations, processes, programs, ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Values can be *inspected*, computations have *behaviour*.

- Any observing context must be able to distinguish values e.g. true and false.
- But they cannot interrogate the structure of arbitrary computational terms:
 - otherwise equivalence would reduce to syntactic identity.

소리가 소문가 소문가 소문가

Values can be *inspected*, computations have *behaviour*.

- Any observing context must be able to distinguish values e.g. true and false.
- But they cannot interrogate the structure of arbitrary computational terms:
 - otherwise equivalence would reduce to syntactic identity.

Algebraic signature, values determined by a set of *value constructors*

(true, false, thunk(-), ...)

Value-computation Bisimulation

A symmetric relation R satisfying the usual bisimulation step conditions, plus:

▶ If $v(s_1, \ldots, s_n) R v_1$ with $v \in VC$, then $v_1 = v(t_1, \ldots, t_n)$ with $s_i R t_i$ for $1 \le i \le n$.

Bisimilar values have the same head constructor and bisimilar arguments.

Value-computation Bisimulation

A symmetric relation R satisfying the usual bisimulation step conditions, plus:

▶ If $v(s_1, \ldots, s_n) R v_1$ with $v \in VC$, then $v_1 = v(t_1, \ldots, t_n)$ with $s_i R t_i$ for $1 \le i \le n$.

Bisimilar values have the same head constructor and bisimilar arguments.

Congruence format:

- Arguments of conclusion source, targets of premises must be patterns — a term made of variables and value constructors.
- Generalisation of *tyft* format (Groote, Vaandrager)

$$\{t_i \xrightarrow{\ell_i} u_i : i \in I\}$$

$$f(w_1, \dots, w_n) \xrightarrow{\ell} t$$

HIGHER-ORDER BISIMULATION FOR MSOS

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

For programming languages, we can place *auxiliary entities* (store etc) in the label – indexed record of terms.

Examples:

- env, an environment mapping identifiers to the values they are bound to ('read' component)
- exc, which signals whether an exception has occurred, and if so which ('write' component)
- store, a mapping from reference cells to their current value (changeable – 'read' + 'write' component)

▶ ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Examples

'...' is a variable ranging over the 'rest of the label'

'-' provides defaults for unmentioned entities

- lookup is a computational constructor for maps.
- update, nil, exc are value constructors.
- NB: information flows between source, label components, target

We wish to ensure that bisimulation is a congruence.

lf

 $s \approx t$ is to imply throw(s) \approx throw(t)

we must allow label components to vary up to bisimulation in the 'step' (a higher-order bisimulation).

・ロン ・回 と ・ 回 と ・ 回 と

Bisimulation for MSOS

As before, except step condition becomes:

▶ If *s R t* and $s \xrightarrow{\ell} s'$ then $\exists t', \ell'$ with *s' R t'*, $t \xrightarrow{\ell'} t'$, reads(ℓ') = reads(ℓ) and writes(ℓ) *R* writes(ℓ').

Write components in the label can vary up to bisimulation

・ロン ・回 と ・ ヨ と ・ ヨ と

Bisimulation for MSOS

As before, except step condition becomes:

▶ If *s R t* and $s \xrightarrow{\ell} s'$ then $\exists t', \ell'$ with *s' R t'*, $t \xrightarrow{\ell'} t'$, reads(ℓ') = reads(ℓ) and writes(ℓ) *R* writes(ℓ').

Write components in the label can vary up to bisimulation

Congruence format: (MSOS-tyft)

- In the conclusion, readable components must be patterns
- In premises, writeable components must be patterns

Bisimulation for MSOS

As before, except step condition becomes:

▶ If *s R t* and $s \xrightarrow{\ell} s'$ then $\exists t', \ell'$ with *s' R t'*, $t \xrightarrow{\ell'} t'$, reads(ℓ') = reads(ℓ) and writes(ℓ) *R* writes(ℓ').

Write components in the label can vary up to bisimulation

Congruence format: (MSOS-tyft)

- In the conclusion, readable components must be patterns
- ► In premises, writeable components must be patterns

Requires lemma:

 'One can replace inputs (read components) for bisimilar ones to yield bisimilar outputs (write components)' ~ applicative bisimulation (Howe)

CONCLUSIONS

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MSOS-tyft format expressive enough to model Caml Light:

- Higher-order functions, imperative state, exceptions, mutual recursion, pattern matching, ...
- \Rightarrow Equivalences are valid in *arbitrary program contexts*

・ロト ・回ト ・ヨト ・ヨト

MSOS-tyft format expressive enough to model Caml Light:

- Higher-order functions, imperative state, exceptions, mutual recursion, pattern matching, ...
- ⇒ Equivalences are valid in *arbitrary program contexts*

[We translate Caml Light programs into reusable constructs, yielding a *component-based formal semantics* of the language.]

イロト イポト イヨト イヨト

Theory:

- Multisorted signatures
- Bisimulations parametrised on read components (env, ...)
 cf. state-based bisimilarity (Mousavi)
- Negative premises

Practice:

► Larger language examples, e.g. C#, Java, ...

We have:

- defined a bisimulation congruence format dealing with computed values and auxiliary entities
- which supports a higher-order notion of bisimulation and Modular SOS
- and is expressive enough to treat a real world programming language.

Thank You.

Appendix

(some more detailed slides)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

(ロ) (回) (目) (目) (日) (の)

Definition

A value-computation signature consists of a set of constructors C, each with an arity in \mathbb{N} , and a set of value constructors $VC \subseteq C$. We let T denote the set of terms, and $V \subseteq T$ the set of value terms whose outermost constructor is in VC.

- Constants like true,5,... are nullary value constructors, and hence values.
- cond is not a value constructor, so cond(B, C, D) is never a value.
- thunk is a value constructor that can wrap an arbitrary computation into a value.

Value-computation transition systems

- Fix a set of labels L.
- We wish to define our relation s → t with s, t ∈ T and l ∈ L to model computations. We define this via inductive rules.
- It is useful to introduce an additional internal relation for silent, context-insensitive steps which we write as ⇒. This relation is reflexive, transitive and a precongruence.

$$x \Rightarrow x \qquad \frac{x_1 \Rightarrow y_1 \quad \cdots \quad x_n \Rightarrow y_n}{f(x_1, \dots, y_n) \Rightarrow f(x_1, \dots, y_n)}$$
$$\frac{x \Rightarrow y \quad y \Rightarrow z}{x \Rightarrow z} \quad \frac{x \Rightarrow x_1 \quad x_1 \stackrel{l}{\rightarrow} y_1 \quad y_1 \Rightarrow y}{x \stackrel{l}{\rightarrow} y}$$

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

(ロ) (同) (E) (E) (E)

Definition

A value-computation bisimulation over a given value-computation transition system $(\Sigma, L, \rightarrow, \Rightarrow)$ is a symmetric relation $R \subseteq T_{\Sigma} \times T_{\Sigma}$ such that

▶ If *s R t* and *s*
$$\xrightarrow{l}$$
 s' then $\exists t'$ with *s' R t'* and *t* \xrightarrow{l} *t'*.

• If
$$s \ R \ t$$
 and $s \Rightarrow s'$ then $\exists t'$ with $s' \ R \ t'$ and $t \Rightarrow t'$.

• If $v(s_1,...,s_n) R t$ with $v \in VC$, then $t \Rightarrow v(t_1,...,t_n)$ with $s_i R t_i$ for $1 \le i \le n$.

Two terms s and t are value-computation bisimilar, written $s \approx_{vc} t$, if there exists a value-computation bisimulation R with s R t.

イロト イボト イヨト イヨト 二日

$$\frac{\{s_i \rightsquigarrow_i u_i : i \in I\}}{f(w_1, \dots, w_n) \rightsquigarrow t}$$
 (Each $\rightsquigarrow, \rightsquigarrow_i \in \{\Rightarrow\} \cup \{\stackrel{a}{\rightarrow} : a \in L\}.)$

- Adaptation of the tyft format [?]
- But u_i and w_i generalised from variables to patterns a term made of variables and value constructors.
- ▶ Allows rules such as $\overline{seq(skip, s) \Rightarrow s}$ and $\overline{force(thunk(s)) \Rightarrow s}$.

For rules in this *value-added tyft* format, vc-bisimilarity is a congruence.

Composition and Unobservability

For each label component, there are default 'unobservable' labels - for unmentioned components.

$$\mathsf{print}(x) \xrightarrow{\{\mathsf{output}' = x, \mathsf{env} = \rho, \mathsf{store} = \sigma, \mathsf{store}' = \sigma, \mathsf{exc} = \mathsf{nil}\}}{\mathsf{skip}}$$

Labels may also be *composed*:

$$\begin{aligned} & \operatorname{seq}(\operatorname{assign}(\mathsf{y}, 6), \operatorname{assign}(\mathsf{x}, 5)) \xrightarrow{\{\operatorname{store}=\sigma, \operatorname{store}'=\operatorname{update}(\sigma, \mathsf{y}, 6), -\}} \operatorname{seq}(\operatorname{skip}, \operatorname{assign}(\mathsf{x}, 5)) \Rightarrow \\ & \operatorname{assign}(\mathsf{x}, 5) \xrightarrow{\{\operatorname{store}=\sigma_1, \operatorname{store}'=\operatorname{update}(\sigma_1, \mathsf{x}, 5), -\}} \operatorname{skip} \end{aligned}$$

 $\mathsf{seq}(\mathsf{assign}(\mathsf{y}, 6), \mathsf{assign}(\mathsf{x}, 5)) \xrightarrow{\{\mathsf{store} = \sigma, \mathsf{store}' = \sigma[\mathsf{x} \mapsto 6, \mathsf{y} \mapsto 5], -\}} \ast \mathsf{skip}$

- Ensures e.g. *single-threaded store*.
- Each label component is a *category*.

《四》 《圖》 《圖》 《圖》 二章

Definition

Given a value-computation transition system $(\Sigma, \mathcal{L}(T_{\Sigma}), \rightarrow, \Rightarrow)$ generated from an MSOS specification, an *MSOS bisimulation* is a symmetric relation $R \subseteq T \times T$ such that:

- ▶ If *s R t* and *s* \xrightarrow{L} *s'* then $\exists t', L'$ with *s' R t'*, *t* $\xrightarrow{L'}$ *t'*, reads(*L'*) = reads(*L*) and writes(*L*) *R* writes(*L'*).
- If $s \ R \ t$ and $s \Rightarrow s'$ then $\exists t'$ with $s' \ R \ t'$ and $t \Rightarrow t'$.
- ▶ If $v(s_1,...,s_n) \ R \ t$ with $v \in VC$, then $t \Rightarrow v(t_1,...,t_n)$ with $s_i \ R \ t_i$ for $1 \le i \le n$.

Two terms s and t are MSOS bisimilar, written $s \approx_{msos} t$, if there exists an MSOS bisimulation R with s R t.

$$\frac{\{s_i \rightsquigarrow_i u_i : i \in I\}}{f(w_1, \dots, w_n) \rightsquigarrow t}$$
 (Each $\rightsquigarrow, \rightsquigarrow_i \in \{\Rightarrow\} \cup \{\stackrel{L}{\rightarrow}\}.)$

For labels *L*:

- ▶ In the conclusion \rightsquigarrow , readable components must be patterns $\{I = u, I' = t, ...\}$
- ► In premises \rightsquigarrow_i , writeable components must be patterns $\{I = t, I' = u, ...\}$
- ► We allow composition and unobservability in conclusion

Bisimilarity-preservation for unprimed entities

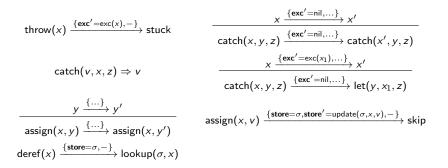
To show congruence of bisimilarity for MSOS tyft, we need:

'One can replace read components (environment, initial store, ...) for bisimilar ones to yield bisimilar write components (final store, thrown exceptions, ...) and target term' \sim applicative bisimulation (Howe)

• If
$$s \xrightarrow{L} s'$$
 and reads $(L) \approx trs$ then:
 $\exists s'', tws$ such that $s' \approx s''$, writes $(L) \approx tws$ and $s \xrightarrow{L'} s''$ for reads $(L') = trs$ and writes $(L') = tws$.

Theorem

MSOS-bisimilarity is a congruence for the MSOS tyft format.



- assign and deref are constructors for imperative store.
- throw and catch for exception handling.

NB: '-' provides defaults for the 'rest of the label' (e.g. store = store', exc' = nil)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Application and Abstraction

$$x \xrightarrow{\{\ldots\}} x'$$

$$apply(x,y) \xrightarrow{\{\ldots\}} apply(x',y)$$

$$\begin{array}{c} y \xrightarrow{\{\ldots\}} y' \\ \\ \mathsf{apply}(v,y) \xrightarrow{\{\ldots\}} \mathsf{apply}(v,y') \end{array}$$

$$\frac{y \xrightarrow{\{\text{env}=\text{update}(\rho, x, v), \dots\}} y'}{\operatorname{apply}(\operatorname{abs}(x, y, \rho), v) \xrightarrow{\{\text{env}=\rho_1, \dots\}}} apply(\operatorname{abs}(x, y', \rho), v)$$

$$\operatorname{apply}(\operatorname{abs}(x, v_1, \rho), v_2) \Rightarrow v_1$$

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ

$$\mathsf{lambda}(x,y) \xrightarrow{\{\mathsf{env}=
ho,\ldots\}} \mathsf{abs}(x,y,
ho)$$

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values