
Modular Bisimulation Theory
for Computations and Values

Martin Churchill and Peter D. Mosses
Swansea University, UK

FoSSaCS, Rome
March 2013

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Part of the project:

PLanCompS
http://www.plancomps.org

EPSRC-funded, 2011-2015
{Swansea, Royal Holloway, City}, UK

Scaling up formal semantics to real-world programming languages

Upcoming workshop:
Scalable Language Specification (SLS13)

with project partner Microsoft Research Cambridge

I Here we work on equivalence for operational semantics:
I bisimulation congruence formats

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

http://www.plancomps.org

Bisimulation

I Bisimilarity provides notions of behavioural equivalence for
operational semantics.

I Defined for transition relation s
`−→ t.

I If s and t are (strongly) bisimilar, they can match each step
and remain bisimilar:

s ≈ t and s
`−→ s ′ implies ∃t ′ with t

`−→ t ′ and s ′ ≈ t ′.

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Congruence

I Any notion of equivalence should be a congruence:

For each f , s1 ≈ t1, . . . , sn ≈ tn implies
f (s1, . . . , sn) ≈ f (t1, . . . , tn)

‘one can replace a term by an equivalent term in a larger
context, and the overall context remains equivalent’

I Enables compositional reasoning

But:

I Bisimilarity is not guaranteed to be a congruence!

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Congruence formats

I Transition systems for operational semantics can be defined
inductively by SOS rules (Plotkin)

I There are known formats for such rules which guarantee that
bisimulation is a congruence. (GSOS, tyft/tyxt, . . .)

{ti
`i−→ yi : i ∈ I}

f (x1, . . . , xn)
`−→ t

x
`−→ x ′

x‖y `−→ x ′‖y
y

`−→ y ′

x‖y `−→ x‖y ′

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

I Well-suited to process algebras but not to programming
languages:

I Programming language terms can compute values
I Programming language transition systems generally have

auxiliary entities (stores, environments, . . .) which can
contain arbitrary terms

ρ[x 7→ v] ` s → s ′

ρ ` apply(λx .s, v)→ apply(λx .s ′, v)

ρ ` apply(λx .v1, v2)→ v1

⇒ not in congruence formats!

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

I Well-suited to process algebras but not to programming
languages:

I Programming language terms can compute values
I Programming language transition systems generally have

auxiliary entities (stores, environments, . . .) which can
contain arbitrary terms

ρ[x 7→ v] ` s → s ′

ρ ` apply(λx .s, v)→ apply(λx .s ′, v)

ρ ` apply(λx .v1, v2)→ v1

⇒ not in congruence formats!

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Contribution

What about bisimulation congruence for programming languages?

In this work we describe a new congruence format which:

I can deal adequately with computed values
I can deal adequately with auxiliary entities

I ⇒ higher-order bisimulation

I scales up to real programming languages (supports MSOS)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Bisimulation for Value-computation Systems

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Values and Computations

We distinguish between value terms and computational terms.
“Values are, computations do” (Levy)

Values:

I Booleans, integers, function abstractions, ...

Computations:

I Expressions, commands, declarations, processes, programs, ...

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Values and computations

Values can be inspected, computations have behaviour.

I Any observing context must be able to distinguish values e.g.
true and false.

I But they cannot interrogate the structure of arbitrary
computational terms:

I otherwise equivalence would reduce to syntactic identity.

Algebraic signature, values determined by a set of value
constructors

(true, false, thunk(−), ...)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Values and computations

Values can be inspected, computations have behaviour.

I Any observing context must be able to distinguish values e.g.
true and false.

I But they cannot interrogate the structure of arbitrary
computational terms:

I otherwise equivalence would reduce to syntactic identity.

Algebraic signature, values determined by a set of value
constructors

(true, false, thunk(−), ...)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Value-computation Bisimulation

A symmetric relation R satisfying the usual bisimulation step
conditions, plus:

I If v(s1, . . . , sn) R v1 with v ∈ VC , then v1 = v(t1, . . . , tn)
with si R ti for 1 ≤ i ≤ n.

Bisimilar values have the same head constructor and bisimilar
arguments.

Congruence format:

I Arguments of conclusion source, targets of premises must be
patterns — a term made of variables and value constructors.

I Generalisation of tyft format (Groote, Vaandrager)

{ti
`i−→ ui : i ∈ I}

f (w1, . . . ,wn)
`−→ t

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Value-computation Bisimulation

A symmetric relation R satisfying the usual bisimulation step
conditions, plus:

I If v(s1, . . . , sn) R v1 with v ∈ VC , then v1 = v(t1, . . . , tn)
with si R ti for 1 ≤ i ≤ n.

Bisimilar values have the same head constructor and bisimilar
arguments.

Congruence format:

I Arguments of conclusion source, targets of premises must be
patterns — a term made of variables and value constructors.

I Generalisation of tyft format (Groote, Vaandrager)

{ti
`i−→ ui : i ∈ I}

f (w1, . . . ,wn)
`−→ t

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Higher-order Bisimulation for MSOS

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Auxiliary entities

I For programming languages, we can place auxiliary entities
(store etc) in the label – indexed record of terms.

Examples:

I env, an environment mapping identifiers to the values they
are bound to (‘read’ component)

I exc, which signals whether an exception has occurred, and if
so which (‘write’ component)

I store, a mapping from reference cells to their current value
(changeable – ‘read’ + ‘write’ component)

I . . .

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Examples

bound(x)
{env=ρ,−}−−−−−−−→ lookup(ρ, x)

y
{exc′=nil,...}−−−−−−−−→ y ′

catch(y , f)
{exc′=nil,...}−−−−−−−−→ catch(y ′, f)

y
{env=update(ρ,x,v),...}−−−−−−−−−−−−−−→ y ′

let(x , v , y)
{env=ρ,...}−−−−−−−→ let(x , v , y ′)

y
{exc′=exc(e),...}−−−−−−−−−−→ y ′

catch(y , f)
{exc′=nil,...}−−−−−−−−→ apply(f , e)

throw(e)
{exc′=exc(e),−}−−−−−−−−−−→ stuck catch(v , f)

{−}−−→ v

‘. . . ’ is a variable ranging over the ‘rest of the label’

‘–’ provides defaults for unmentioned entities

I lookup is a computational constructor for maps.

I update, nil, exc are value constructors.

I NB: information flows between source, label components,
target

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Higher-order bisimulation

We wish to ensure that bisimulation is a congruence.

If

s ≈ t is to imply throw(s) ≈ throw(t)

we must allow label components to vary up to bisimulation in the
‘step’ (a higher-order bisimulation).

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Bisimulation for MSOS

As before, except step condition becomes:

I If s R t and s
`−→ s ′ then ∃t ′, `′ with s ′ R t ′, t

`′−→ t ′,
reads(`′) = reads(`) and writes(`) R writes(`′).

Write components in the label can vary up to bisimulation

Congruence format: (MSOS-tyft)

I In the conclusion, readable components must be patterns

I In premises, writeable components must be patterns

Requires lemma:

I ‘One can replace inputs (read components) for bisimilar ones
to yield bisimilar outputs (write components)’

∼ applicative bisimulation (Howe)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Bisimulation for MSOS

As before, except step condition becomes:

I If s R t and s
`−→ s ′ then ∃t ′, `′ with s ′ R t ′, t

`′−→ t ′,
reads(`′) = reads(`) and writes(`) R writes(`′).

Write components in the label can vary up to bisimulation

Congruence format: (MSOS-tyft)

I In the conclusion, readable components must be patterns

I In premises, writeable components must be patterns

Requires lemma:

I ‘One can replace inputs (read components) for bisimilar ones
to yield bisimilar outputs (write components)’

∼ applicative bisimulation (Howe)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Bisimulation for MSOS

As before, except step condition becomes:

I If s R t and s
`−→ s ′ then ∃t ′, `′ with s ′ R t ′, t

`′−→ t ′,
reads(`′) = reads(`) and writes(`) R writes(`′).

Write components in the label can vary up to bisimulation

Congruence format: (MSOS-tyft)

I In the conclusion, readable components must be patterns

I In premises, writeable components must be patterns

Requires lemma:

I ‘One can replace inputs (read components) for bisimilar ones
to yield bisimilar outputs (write components)’

∼ applicative bisimulation (Howe)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Conclusions

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Expressivity

MSOS-tyft format expressive enough to model Caml Light:

I Higher-order functions, imperative state, exceptions, mutual
recursion, pattern matching, . . .

⇒ Equivalences are valid in arbitrary program contexts

[We translate Caml Light programs into reusable constructs,
yielding a component-based formal semantics of the language.]

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Expressivity

MSOS-tyft format expressive enough to model Caml Light:

I Higher-order functions, imperative state, exceptions, mutual
recursion, pattern matching, . . .

⇒ Equivalences are valid in arbitrary program contexts

[We translate Caml Light programs into reusable constructs,
yielding a component-based formal semantics of the language.]

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Further Directions

Theory:

I Multisorted signatures

I Bisimulations parametrised on read components (env, . . .)
cf. state-based bisimilarity (Mousavi)

I Negative premises

Practice:

I Larger language examples, e.g. C#, Java, . . .

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Conclusions

We have:

I defined a bisimulation congruence format dealing with
computed values and auxiliary entities

I which supports a higher-order notion of bisimulation and
Modular SOS

I and is expressive enough to treat a real world programming
language.

Thank You.

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Appendix

(some more detailed slides)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Value-computation signatures

Definition
A value-computation signature consists of a set of constructors C ,
each with an arity in N, and a set of value constructors VC ⊆ C .
We let T denote the set of terms, and V ⊆ T the set of value
terms whose outermost constructor is in VC .

I Constants like true,5,... are nullary value constructors, and
hence values.

I cond is not a value constructor, so cond(B,C ,D) is never a
value.

I thunk is a value constructor that can wrap an arbitrary
computation into a value.

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Value-computation transition systems

I Fix a set of labels L.

I We wish to define our relation s
l−→ t with s, t ∈ T and l ∈ L

to model computations. We define this via inductive rules.

I It is useful to introduce an additional internal relation for
silent, context-insensitive steps which we write as ⇒. This
relation is reflexive, transitive and a precongruence.

x ⇒ x
x1 ⇒ y1 · · · xn ⇒ yn
f (x1, . . . , yn)⇒ f (x1, . . . , yn)

x ⇒ y y ⇒ z
x ⇒ z

x ⇒ x1 x1
l−→ y1 y1 ⇒ y

x
l−→ y

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Value-computation Bisimulation

Definition
A value-computation bisimulation over a given value-computation
transition system (Σ, L,→,⇒) is a symmetric relation
R ⊆ TΣ × TΣ such that

I If s R t and s
l−→ s ′ then ∃t ′ with s ′ R t ′ and t

l−→ t ′.

I If s R t and s ⇒ s ′ then ∃t ′ with s ′ R t ′ and t ⇒ t ′.

I If v(s1, . . . , sn) R t with v ∈ VC , then t ⇒ v(t1, . . . , tn) with
si R ti for 1 ≤ i ≤ n.

Two terms s and t are value-computation bisimilar, written
s ≈vc t, if there exists a value-computation bisimulation R with
s R t.

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Congruence Format

{si i ui : i ∈ I}
f (w1, . . . ,wn) t

(Each , i ∈ {⇒} ∪ {
a−→: a ∈ L}.)

I Adaptation of the tyft format [?]

I But ui and wi generalised from variables to patterns — a term
made of variables and value constructors.

I Allows rules such as seq(skip, s)⇒ s and force(thunk(s))⇒ s.

For rules in this value-added tyft format, vc-bisimilarity is a
congruence.

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Composition and Unobservability

For each label component, there are default ‘unobservable’ labels
− for unmentioned components.

print(x)
{output′=x ,env=ρ,store=σ,store′=σ,exc=nil}−−−−−−−−−−−−−−−−−−−−−−−−−−−→ skip

Labels may also be composed:

seq(assign(y, 6), assign(x, 5))
{store=σ,store′=update(σ,y,6),−}−−−−−−−−−−−−−−−−−−−−−→ seq(skip, assign(x, 5))⇒

assign(x, 5)
{store=σ1,store

′=update(σ1,x,5),−}−−−−−−−−−−−−−−−−−−−−−−→ skip

seq(assign(y, 6), assign(x, 5))
{store=σ,store′=σ[x 7→6,y 7→5],−}−−−−−−−−−−−−−−−−−−−−−→ ∗skip

I Ensures e.g. single-threaded store.

I Each label component is a category.

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Bisimulation for MSOS

Definition
Given a value-computation transition system (Σ,L(TΣ),→,⇒)
generated from an MSOS specification, an MSOS bisimulation is a
symmetric relation R ⊆ T × T such that:

I If s R t and s
L−→ s ′ then ∃t ′, L′ with s ′ R t ′, t

L′−→ t ′,
reads(L′) = reads(L) and writes(L) R writes(L′).

I If s R t and s ⇒ s ′ then ∃t ′ with s ′ R t ′ and t ⇒ t ′.

I If v(s1, . . . , sn) R t with v ∈ VC , then t ⇒ v(t1, . . . , tn) with
si R ti for 1 ≤ i ≤ n.

Two terms s and t are MSOS bisimilar, written s ≈msos t, if there
exists an MSOS bisimulation R with s R t.

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

MSOS tyft format

{si i ui : i ∈ I}
f (w1, . . . ,wn) t

(Each , i ∈ {⇒} ∪ {
L−→}.)

For labels L:

I In the conclusion , readable components must be patterns
{l = u, l′ = t, . . .}

I In premises i , writeable components must be patterns
{l = t, l′ = u, . . .}

I We allow composition and unobservability in conclusion

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Bisimilarity-preservation for unprimed entities

To show congruence of bisimilarity for MSOS tyft, we need:

‘One can replace read components (environment, initial store, . . .)
for bisimilar ones to yield bisimilar write components (final store,
thrown exceptions, . . .) and target term’ ∼ applicative
bisimulation (Howe)

I If s
L−→ s ′ and reads(L) ≈ trs then:

∃ s ′′, tws such that s ′ ≈ s ′′, writes(L) ≈ tws and s
L′−→ s ′′ for

reads(L′) = trs and writes(L′) = tws.

Theorem
MSOS-bisimilarity is a congruence for the MSOS tyft format.

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

throw(x)
{exc′=exc(x),−}−−−−−−−−−−→ stuck

x
{exc′=nil,...}−−−−−−−−→ x ′

catch(x , y , z)
{exc′=nil,...}−−−−−−−−→ catch(x ′, y , z)

catch(v , x , z)⇒ v
x
{exc′=exc(x1),...}−−−−−−−−−−−→ x ′

catch(x , y , z)
{exc′=nil,...}−−−−−−−−→ let(y , x1, z)

y
{...}−−−→ y ′

assign(x , y)
{...}−−−→ assign(x , y ′)

assign(x , v)
{store=σ,store′=update(σ,x,v),−}−−−−−−−−−−−−−−−−−−−−−→ skip

deref(x)
{store=σ,−}−−−−−−−−→ lookup(σ, x)

I assign and deref are constructors for imperative store.

I throw and catch for exception handling.

NB: ‘–’ provides defaults for the ‘rest of the label’

(e.g. store = store′, exc′ = nil)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

Application and Abstraction

x
{...}−−→ x ′

apply(x , y)
{...}−−→ apply(x ′, y)

y
{...}−−→ y ′

apply(v , y)
{...}−−→ apply(v , y ′)

y
{env=update(ρ,x ,v),...}−−−−−−−−−−−−−−→ y ′

apply(abs(x , y , ρ), v)
{env=ρ1,...}−−−−−−−→

apply(abs(x , y ′, ρ), v)

apply(abs(x , v1, ρ), v2)⇒ v1

lambda(x , y)
{env=ρ,...}−−−−−−−→ abs(x , y , ρ)

Martin Churchill and Peter D. Mosses Modular Bisimulation Theory for Computations and Values

