Modular Semantics for Open Transition Rules with Negative Premises

Martin Churchill, Peter D. Mosses, Mohammad Reza Mousavi Swansea University Halmstad University

> Queen Mary University of London June 2013

Structural Operational Semantics and Negative Premises

- Structural Operational Semantics specifies a transition (evaluation) relation (¹/_→) via *inductive rules*.
- Sometimes, authors of process algebras like to use negative premises. E.g.:

$$\frac{x \stackrel{l}{\longrightarrow} x'}{x; y \stackrel{l}{\longrightarrow} x'; y} \qquad \frac{\{x \stackrel{l}{\nrightarrow}\}_l \quad y \stackrel{m}{\longrightarrow} y'}{x; y \stackrel{m}{\longrightarrow} y'}$$

 Sometimes negative premises are needed, e.g. certain priority operators inexpressible using just positive premises [Aceto and Ingólfsdóttir(2008)].

Semantics of Systems with Negative Premises?

- No longer a simple inductive definition of provable transitions.
- Potential pitfalls, e.g. rules like $\frac{a \stackrel{!}{\not\to}}{a \stackrel{!}{\to} b}$
- Various approaches, that of *well-supported proofs* is a popular & powerful notion [Glabbeek(2004)]
- Is incomplete for pathological examples like that above
 - neither $\overline{a \xrightarrow{l}}$ nor $a \xrightarrow{l} b$ are derivable
 - by restricting attention to complete specifications, one achieves a 2-valued TSS

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Towards open formulae

- Well-supported proof only works for closed formulas
 - Asserting provability of $s \xrightarrow{l} s'$ or $s \xrightarrow{l} for$ closed s, s'.
- We wish to extend the notion to open formulae, with hypotheses are variables. e.g.

$$\frac{\{x \stackrel{l}{\nrightarrow}\}_{l} \qquad \{y \stackrel{l}{\nrightarrow}\}_{l} \qquad z \stackrel{m}{\longrightarrow} z'}{(x; y); z \stackrel{m}{\longrightarrow} z'}$$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Towards open formulae

- Well-supported proof only works for closed formulas
 - Asserting provability of $s \xrightarrow{l} s'$ or $s \xrightarrow{l}$ for closed s, s'.
- We wish to extend the notion to open formulae, with hypotheses are variables. e.g.

$$\frac{\{x \stackrel{l}{\not\rightarrow}\}_{I} \qquad \{y \stackrel{l}{\not\rightarrow}\}_{I} \qquad z \stackrel{m}{\longrightarrow} z'}{(x; y); z \stackrel{m}{\longrightarrow} z'}$$

► Why?

 To support (open) operational laws via (fh-)bisimulation which remain valid under disjoint extensions [Mosses et al.(2010)Mosses, Mousavi, and Reniers]

• e.g.
$$(x; y); z \sim x; (y; z)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Contribution

A notion of **well-supported proof for open transition rules** satisfying various desirable properties:

- Consistency $(s \xrightarrow{l} s' \text{ and } s \xrightarrow{l} can't \text{ both be provable})$
- ▶ Instantiation closure (if \overline{s} is provable then so is $\overline{\sigma(s)}$)
- Agrees with original notion on closed terms
- Modularity (under disjoint extensions, old proofs remain valid)
- Conservativity (under disjoint extensions, no new proofs of old formulae)

Introduction Well-supported Proofs Results Conclusions Well-supported Proofs for Closed Formulae for Open Transition Rules

Well-Supported Proofs

・ロト・(四ト・(田下・(日下・(日下)

for Closed Formulae for Open Transition Rules

Basic Notions

Transition System Specifications have:

- A signature Σ and set of labels L.
- ► Formulas ϕ are of the form $s \xrightarrow{l} s'$ or $s \xrightarrow{l} \phi$ where s, s' are Σ -terms and $l \in L$.

•
$$s \xrightarrow{l} s'$$
 denies $s \xrightarrow{l}$ and vice-versa.

• A set of deduction rules $\frac{H}{s \xrightarrow{l} s'}$ over such formulas.

A *derivation* of a transition rule $\frac{H}{\phi}$ is an inductive proof using rules in D with open leaves/hypotheses (possibly negative) in H.

for Closed Formulae for Open Transition Rules

Ground well-supported proof

A ground well-supported proof of $\overline{\phi}$ is a upwardly branching tree labelled by closed formulae and rooted at ϕ , where:

• Positive steps $\frac{K}{s \xrightarrow{l} s'}$ are instances of deduction rules

• For negative steps
$$\frac{K}{s \stackrel{l}{\rightarrow}}$$
, it must be the case that:

Each derivation of $\frac{N}{s \xrightarrow{l} s'}$, (*N* negative) contains some formula which denies a formula in *K*

Negative steps work by refuting each possible derivation.

for Closed Formulae for Open Transition Rules

Closed-Instance Semantics

- As we will see, the above definition doesn't work for open formulae / transition rules.
- An alternative is *closed-instance semantics*: φ holds for open φ if all closed instantiations σ(φ) holds.
- But this fails to be *modular*:
 - ▶ In a base system with single rule $\frac{X \xrightarrow{b}}{f(x) \xrightarrow{a} x}$, $\overline{f(x) \xrightarrow{a} x}$ holds.
 - But disjointly adding $1 \xrightarrow{b} 1$ invalidates the formula.

for Closed Formulae for Open Transition Rules

Towards open formulae

Example

Consider a TSS with deduction rules $\frac{f(x) \xrightarrow{a}}{g(x) \xrightarrow{a} x}$, $\overline{f(0) \xrightarrow{a} 0}$. Then:

- $\overline{f(1) \stackrel{a}{\not\rightarrow}}$ and $\overline{g(1) \stackrel{a}{\longrightarrow} 1}$ have well-supported proofs.
- The derivation $f(0) \xrightarrow{a} 0$ ensures that neither $\overline{f(0)} \xrightarrow{a}$ nor $\overline{g(0)} \xrightarrow{a} 0$ are provable.
- $f(x) \xrightarrow{a}$ is provable... shouldn't be, due to the derivation $f(0) \xrightarrow{a} 0$ which denies an instance of $f(x) \xrightarrow{a}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

for Closed Formulae for Open Transition Rules

Towards open formulae

Example

Consider a TSS with deduction rules $\frac{f(x) \xrightarrow{a}}{g(x) \xrightarrow{a} x}$, $\overline{f(0) \xrightarrow{a} 0}$. Then:

- $\overline{f(1) \stackrel{a}{\not\rightarrow}}$ and $\overline{g(1) \stackrel{a}{\longrightarrow} 1}$ have well-supported proofs.
- The derivation $f(0) \xrightarrow{a} 0$ ensures that neither $\overline{f(0)} \xrightarrow{a}$ nor $\overline{g(0)} \xrightarrow{a} 0$ are provable.
- $f(x) \xrightarrow{a}$ is provable... shouldn't be, due to the derivation $f(0) \xrightarrow{a} 0$ which denies an instance of $f(x) \xrightarrow{a}$.

 $\Rightarrow \text{ We must consider counterexamples up to substitution:} \\ \text{otherwise, } \overline{g(x) \xrightarrow{a} x} \text{ provable, but } \overline{g(0) \xrightarrow{a} 0} \text{ unprovable.}$

for Closed Formulae for Open Transition Rules

Well-supported proofs for open formulas

We next adapt the notion of well-supported proof to open transition rules $\frac{H}{\phi}$ where H is a context:

• *H* gives assumptions on variables $(x \xrightarrow{l} s, x \xrightarrow{l})$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

for Closed Formulae for Open Transition Rules

Well-supported proofs for open formulas

A *well-supported proof* of $\frac{H}{\phi}$ is a upwardly branching tree labelled by formulae and rooted at ϕ , where:

- Leaves are in H
- Positive steps $\frac{K}{s \stackrel{l}{\longrightarrow} s'}$ are instances of deduction rules

• For negative steps
$$\frac{K}{s \stackrel{l}{\rightarrow}}$$
, it must be the case that:

Each derivation of $\frac{C}{\sigma(s) \xrightarrow{l} s'}$, (C negative + vars) contains a formula denying $\sigma(k)$ for some $k \in K$

(Differences from closed version: *H* hypotheses, substitutive counter examples.)

Introduction Well-supported Proofs Results Conclusions	Basic Results Modularity Conservativity
--	---

BASIC RESULTS

Martin Churchill Modular Semantics for Open Transition Rules with Negative P

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Basic Results Modularity Conservativity

Instantiation Closure

Theorem (Closure under Instantiating Formulae) Suppose $\frac{\{\psi_i : i \in I\}}{\phi}$ has a well-supported proof. Let σ be a substitution so each $\frac{\kappa}{\sigma(\psi_i)}$ has a well-supported proof. Then $\frac{\kappa}{\sigma(\phi)}$ has a well-supported proof.

Basic Results Modularity Conservativity

Instantiation Closure

Theorem (Closure under Instantiating Formulae) Suppose $\frac{\{\psi_i : i \in I\}}{\phi}$ has a well-supported proof. Let σ be a substitution so each $\frac{\kappa}{\sigma(\psi_i)}$ has a well-supported proof. Then $\frac{\kappa}{\sigma(\phi)}$ has a well-supported proof.

Proof: Substitution + pasting of proof trees.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Basic Results Modularity Conservativity

Consistency

Theorem (Consistency)

In any TSS, it can't be the case that $\overline{s \xrightarrow{l} s'}$ and $\overline{s \xrightarrow{l} s'}$ both have well-supported proofs.

Basic Results Modularity Conservativity

Consistency

Theorem (Consistency)

In any TSS, it can't be the case that $s \xrightarrow{l} s'$ and $s \xrightarrow{l}$ both have well-supported proofs.

Proof (contradiction): assume minimal proofs of contradicting formulae. use "root derivation" of positive part with negative part to find smaller contradicting proofs.

Basic Results Modularity Conservativity

Consistency

Theorem (Consistency)

In any TSS, it can't be the case that $s \xrightarrow{l} s'$ and $s \xrightarrow{l} both$ have well-supported proofs.

Proof (contradiction): assume minimal proofs of contradicting formulae. use "root derivation" of positive part with negative part to find smaller contradicting proofs.

Generalisation: Some consistency assumptions on $H \Rightarrow$ can't prove both $\frac{H}{s \xrightarrow{l} s'}$ and $\frac{H}{s \xrightarrow{l} \phi}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Modularity

Martin Churchill Modular Semantics for Open Transition Rules with Negative P

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ● ●

Basic Results Modularity Conservativity

Disjoint Extensions, Modularity

- A disjoint extension of a TSS is:
 - \blacktriangleright An extension of the signature Σ with new symbols Σ' and labels
 - An extension of D with new rules D', each of which is of the form $\frac{S}{f(s_1, \ldots, s_n) \xrightarrow{l} t}$ for $f \in D'$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Basic Results Modularity Conservativity

Disjoint Extensions, Modularity

- A disjoint extension of a TSS is:
 - \blacktriangleright An extension of the signature Σ with new symbols Σ' and labels
 - An extension of *D* with new rules *D'*, each of which is of the form $\frac{S}{f(s_1, \ldots, s_n) \stackrel{l}{\longrightarrow} t}$ for $f \in D'$.

Important property: If π is a well-supported proof of $\frac{H}{\phi}$ in T, then remains so in $T \uplus T_1$.

For positive steps
$$\frac{K}{s \stackrel{l}{\longrightarrow} s'}$$
, simple.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Basic Results Modularity Conservativity

Modularity for Negative Steps

For negative steps we need:

$$\frac{\mathcal{K}}{s\stackrel{l}{\rightarrow}} \text{ is valid in } T_0 \Rightarrow \text{ valid in } T_0 \uplus T_1.$$

i.e. each counterexample proving $\frac{C}{\sigma(s) \stackrel{l}{\longrightarrow} s'}$ must be denied for $\sigma \in T_0 \uplus T_1$

Basic Results Modularity Conservativity

Modularity for Negative Steps

For negative steps we need:

$$\frac{\kappa}{s \stackrel{l}{\rightarrow}} \text{ is valid in } T_0 \Rightarrow \text{ valid in } T_0 \uplus T_1.$$

i.e. each counterexample proving $\frac{C}{\sigma(s) \stackrel{l}{\longrightarrow} s'}$ must be denied for $\sigma \in T_0 \uplus T_1$

We need to:

Map potential counterexample derivations in T₀ ⊎ T₁ back into a T₀ derivation (its "skeleton")

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Basic Results Modularity Conservativity

Modularity for Negative Steps

We need to:

 Map potential counterexample derivations in T₀ ⊎ T₁ back into a T₀ derivation (its "skeleton")

э

Basic Results Modularity Conservativity

Modularity for well-supported proofs

Theorem (Modularity)

Suppose $T_0 \uplus T_1$ is a disjoint extension of T_0 and let π be a well-supported proof for $\frac{H}{\phi}$ in T_0 .

Then π is a well-supported proof for $\frac{H}{\phi}$ in $T_0 \uplus T_1$.

Introduction Well-supported Proofs Results Conclusions	Basic Results Modularity Conservativity
--	---

CONSERVATIVITY

Martin Churchill Modular Semantics for Open Transition Rules with Negative P

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Basic Results Modularity Conservativity

Source dependence

Now seek to show: in disjoint extensions, no new proofs of old formulae.

Requires source dependence:

each variable in a rule can be traced back to a variable in the source of the conclusion (via transitions in the premise)

Ok:
$$\frac{x \stackrel{l}{\longrightarrow} x'}{x; y \stackrel{l}{\longrightarrow} x'; y}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Basic Results Modularity Conservativity

Source dependence

Now seek to show: in disjoint extensions, no new proofs of old formulae.

Requires source dependence:

each variable in a rule can be traced back to a variable in the source of the conclusion (via transitions in the premise)

Ok:
$$\frac{x \xrightarrow{l} x'}{x; y \xrightarrow{l} x'; y}$$

Example Consider a TSS $\frac{x \xrightarrow{b} 1}{0 \xrightarrow{a} 1}$. Then $0 \xrightarrow{a} 1$ not provable. Extend by constant 2 with $2 \xrightarrow{b} 1$. Then $0 \xrightarrow{a} 1$ is provable.

Basic Results Modularity Conservativity

Conservativeness for Disjoint Extensions

Theorem (Conservativeness for Disjoint Extensions)

Let $T_0 \uplus T_1$ be a disjoint extension of T_0 , where T_0 is source-dependent, and let $\phi \in T_0$. Let π be a well-supported proof of $\frac{H}{\phi}$ in $T_0 \uplus T_1$. Then π is a well-supported proof of $\frac{H}{\phi}$ in T_0 .

Proof: induction using "source dependence measure" for positive steps. For negative steps, uses modularity result to move counterexamples from T_0 to $T_0 \uplus T_1$.

(日) (四) (王) (王) (王)

Basic Results Modularity Conservativity

Soundness over Closed-instance Semantics

Theorem

For closed ϕ , if $\overline{\phi}$ has a well-supported proof then it has a ground well-supported proof.

Proof: Follows from the fact that $\overline{\phi}$ has a closed well-supported proof (instantiation closure).

・ロン ・回 と ・ ヨ と ・ ヨ と

Basic Results Modularity Conservativity

Conservativity over Closed-instance Semantics

Needs source dependence:

Example

Consider TSS T with deduction rule $\frac{x \xrightarrow{b} 1}{0 \xrightarrow{a} 1}$.

Then $0 \xrightarrow{a}{\rightarrow}$ has a ground well-supported proof (no valid derivations concluding $0 \xrightarrow{a}_{-}$) But no well-supported proof in T.

Basic Results Modularity Conservativity

Conservativity over Closed-instance Semantics

Theorem

In a source dependent system and closed ϕ , if $\overline{\phi}$ has a ground well-supported proof then it has a well-supported proof.

Proof: Follows from the fact that each derivation of $s \xrightarrow{l} s'$ for closed s is closed.

Introduction	Contribution
Well-supported Proofs	FH-bisimulation
Results	PLanCompS
Conclusions	Further Directions
Conclusions	Further Directions

CONCLUSIONS

Martin Churchill Modular Semantics for Open Transition Rules with Negative P

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Contribution FH-bisimulation PLanCompS Further Directions

Contribution

Our notion satisfies:

- Consistency $(s \xrightarrow{l} s' \text{ and } s \xrightarrow{l} can't \text{ both be provable})$
- ▶ Instantiation closure (if \overline{s} is provable then so is $\overline{\sigma(s)}$)
- Modularity (under disjoint extensions, old proofs remain valid) Assuming source dependent rules:
 - Agrees with original notion on closed terms
 - Conservativity (under disjoint extensions, no new proofs of old formulae)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Contribution FH-bisimulation PLanCompS Further Directions

Open Algebraic Laws

Consider an algebraic law, like

$$(x; y); z \sim x; (y; z)$$

As the language is (disjointly) extended, the domain of quantification (x,y,z) increases. Ideal:

- we prove such laws in the "minimal subsystem" containing just the rules for ;
- guaranteed to hold in any extension = any system containing this notion of ;

Contribution FH-bisimulation PLanCompS Further Directions

Fh-bisimulation

To prove such laws, we need to consider a notion of bisimulation for open terms satisfying this modularity property.

fh-bisimulation is such a notion:

▶ if
$$s \ R \ t$$
 and $\frac{H}{s \xrightarrow{l} s'}$ then $\frac{H}{t \xrightarrow{l} t'}$ with $s' \ R \ t'$
(usual 'step' condition, but under arbitrary hypotheses on variables.)

This notion *is* modular – preserved by disjoint extensions. [Mosses et al.(2010)Mosses, Mousavi, and Reniers]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Contribution FH-bisimulation PLanCompS Further Directions

...with negative premises

- The work here can be used to adapt fh-bisimulation to the negative setting.
- Modularity of the underlying well-supported proofs leads to modularity for the proved equations.
- Another key issue: compositionality (bisimulation as a congruence, via rule formats)
 [Mousavi et al.(2007)Mousavi, Reniers, and Groote]

Contribution FH-bisimulation PLanCompS Further Directions

PLanCompS vision

- A growing repository of fundamental constructs (like ;) specified independently
- Laws about such constructs can be proved once and for all
 - e.g. associativity/commutativity/unit laws
- Formal semantics can be given in an accessible manner by translation into funcons
 - Tool support e.g. running programs
- Computational effects via the mechanics of *Modular SOS* [Mosses(2004), Churchill and Mosses(2013)]

www.plancomps.org

Contribution FH-bisimulation PLanCompS Further Directions

Conclusions

We:

- Extended well-supported proofs to open transition rules
- Proved consistency, instantiation, modularity, conservativity results

Further directions:

- Use these results to support modularity of equational laws
- Consider compositionality of fh-bisimulation based on these notions

▶ ...

Thank You.

Contribution Introduction Well-supported Proofs Results **PLanCompS** Conclusions

FH-bisimulation Further Directions

Luca Aceto and Anna Ingólfsdóttir.

On the expressibility of priority. Inf. Process. Lett., 109(1):83-85, 2008.

Martin Churchill and PeterD. Mosses.

Modular bisimulation theory for computations and values.

In Frank Pfenning, editor, Foundations of Software Science and Computation Structures, volume 7794 of Lecture Notes in Computer Science, pages 97-112. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-37074-8. doi: 10.1007/978-3-642-37075-5_7. URL http://dx.doi.org/10.1007/978-3-642-37075-5_7.

Robert Jan (Rob) van Glabbeek.

The meaning of negative premises in transition system specifications II. Journal of Logic and Algebraic Programming (JLAP), 60-61:229-258, 2004.

Peter D. Mosses.

Modular structural operational semantics. J. Log. Algebr. Program., 60-61:195-228, 2004.

Peter D. Mosses, Mohammad Reza Mousavi, and Michel A. Reniers,

Robustness of equations under operational extensions.

In Sibylle B. Fröschle and Frank D. Valencia, editors, EXPRESS'10, volume 41 of EPTCS, pages 106-120, 2010.

MohammadReza Mousavi, Michel A. Reniers, and Jan Friso Groote.

SOS rule formats and meta-theory: 20 years after. Theoretical Computer Science, 373:238-272, 2007.

・ロン ・回と ・ヨン・

æ