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Structural Operational Semantics and Negative Premises

I Structural Operational Semantics specifies a transition

(evaluation) relation (
l−→) via inductive rules.

I Sometimes, authors of process algebras like to use negative
premises. E.g.:

x
l−→ x ′

x ; y
l−→ x ′; y

{x l9 }l y
m−→ y ′

x ; y
m−→ y ′

I Sometimes negative premises are needed, e.g. certain priority
operators inexpressible using just positive premises
[Aceto and Ingólfsdóttir(2008)].
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Semantics of Systems with Negative Premises?

I No longer a simple inductive definition of provable transitions.

I Potential pitfalls, e.g. rules like a
l9

a
l−→ b

I Various approaches, that of well-supported proofs is a popular
& powerful notion [Glabbeek(2004)]

I Is incomplete for pathological examples like that above

I neither a
l9 nor a

l−→ b are derivable
I by restricting attention to complete specifications, one

achieves a 2-valued TSS
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Towards open formulae

I Well-supported proof only works for closed formulas

I Asserting provability of s
l−→ s ′ or s

l9 for closed s,s ′.

I We wish to extend the notion to open formulae, with
hypotheses are variables. e.g.

{x l9 }l {y l9 }l z
m−→ z ′

(x ; y); z
m−→ z ′

I Why?
I To support (open) operational laws via (fh-)bisimulation which

remain valid under disjoint extensions
[Mosses et al.(2010)Mosses, Mousavi, and Reniers]

I e.g. (x ; y); z ∼ x ; (y ; z)
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A notion of well-supported proof for open transition rules
satisfying various desirable properties:

I Consistency (s
l−→ s ′ and s

l9 can’t both be provable)

I Instantiation closure (if s is provable then so is σ(s))

I Agrees with original notion on closed terms

I Modularity (under disjoint extensions, old proofs remain valid)

I Conservativity (under disjoint extensions, no new proofs of old
formulae)
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Basic Notions

Transition System Specifications have:

I A signature Σ and set of labels L.

I Formulas φ are of the form s
l−→ s ′ or s

l9 where s, s ′ are
Σ-terms and l ∈ L.

I s
l−→ s ′ denies s

l9 and vice-versa.

I A set of deduction rules H

s
l−→ s ′

over such formulas.

A derivation of a transition rule H
φ is an inductive proof using rules

in D with open leaves/hypotheses (possibly negative) in H.
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Ground well-supported proof

A ground well-supported proof of φ is a upwardly branching tree
labelled by closed formulae and rooted at φ, where:

I Positive steps K

s
l−→ s ′

are instances of deduction rules

I For negative steps K

s
l9

, it must be the case that:

Each derivation of N

s
l−→ s ′

, (N negative)

contains some formula which denies a formula in K

Negative steps work by refuting each possible derivation.
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Closed-Instance Semantics

I As we will see, the above definition doesn’t work for open
formulae / transition rules.

I An alternative is closed-instance semantics: φ holds for open
φ if all closed instantiations σ(φ) holds.

I But this fails to be modular:

I In a base system with single rule x
b9

f (x)
a−→ x

, f (x)
a−→ x holds.

I But disjointly adding 1
b−→ 1 invalidates the formula.
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Towards open formulae

Example

Consider a TSS with deduction rules
f (x)

a9
g(x)

a−→ x
, f (0)

a−→ 0. Then:

I f (1)
a9 and g(1)

a−→ 1 have well-supported proofs.

I The derivation f (0)
a−→ 0 ensures that neither f (0)

a9 nor

g(0)
a−→ 0 are provable.

I f (x)
a9 is provable... shouldn’t be, due to the derivation

f (0)
a−→ 0 which denies an instance of f (x)

a9 .

⇒ We must consider counterexamples up to substitution:

otherwise, g(x)
a−→ x provable, but g(0)

a−→ 0 unprovable.
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Well-supported proofs for open formulas

We next adapt the notion of well-supported proof to open
transition rules H

φ where H is a context:

I H gives assumptions on variables (x
l−→ s, x

l9 ).
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Well-supported proofs for open formulas

A well-supported proof of H
φ is a upwardly branching tree labelled

by formulae and rooted at φ, where:

I Leaves are in H

I Positive steps K

s
l−→ s ′

are instances of deduction rules

I For negative steps K

s
l9

, it must be the case that:

Each derivation of C

σ(s)
l−→ s ′

, (C negative + vars)

contains a formula denying σ(k) for some k ∈ K

(Differences from closed version:
H hypotheses, substitutive counter examples.)

Martin Churchill Modular Semantics for Open Transition Rules with Negative Premises



Introduction
Well-supported Proofs

Results
Conclusions

Basic Results
Modularity
Conservativity

Basic Results

Martin Churchill Modular Semantics for Open Transition Rules with Negative Premises



Introduction
Well-supported Proofs

Results
Conclusions

Basic Results
Modularity
Conservativity

Instantiation Closure

Theorem (Closure under Instantiating Formulae)

Suppose
{ψi : i ∈ I}

φ has a well-supported proof.

Let σ be a substitution so each K
σ(ψi )

has a well-supported proof.

Then K
σ(φ)

has a well-supported proof.

Proof: Substitution + pasting of proof trees.
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Consistency

Theorem (Consistency)

In any TSS, it can’t be the case that s
l−→ s ′ and s

l9 both have
well-supported proofs.

Proof (contradiction): assume minimal proofs of contradicting
formulae. use “root derivation” of positive part with negative part
to find smaller contradicting proofs.

Generalisation: Some consistency assumptions on H ⇒
can’t prove both H

s
l−→ s ′

and H

s
l9
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Disjoint Extensions, Modularity

A disjoint extension of a TSS is:

I An extension of the signature Σ with new symbols Σ′ and
labels

I An extension of D with new rules D ′, each of which is of the
form S

f (s1, . . . , sn)
l−→ t

for f ∈ D ′.

Important property: If π is a well-supported proof of H
φ in T , then

remains so in T ] T1.

For positive steps K

s
l−→ s ′

, simple.
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Modularity for Negative Steps

For negative steps we need:

K

s
l9

is valid in T0 ⇒ valid in T0 ] T1.

i.e. each counterexample proving C

σ(s)
l−→ s ′

must be denied for

σ ∈ T0 ] T1

We need to:

I Map potential counterexample derivations in T0 ] T1 back
into a T0 derivation (its “skeleton”)
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Modularity for well-supported proofs

Theorem (Modularity)

Suppose T0 ] T1 is a disjoint extension of T0 and let π be a
well-supported proof for H

φ in T0.

Then π is a well-supported proof for H
φ in T0 ] T1.
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Source dependence

Now seek to show: in disjoint extensions, no new proofs of old
formulae.
Requires source dependence:

each variable in a rule can be traced back to a variable in the
source of the conclusion (via transitions in the premise)

Ok: x
l−→ x ′

x ; y
l−→ x ′; y

Example

Consider a TSS x
b−→ 1

0
a−→ 1

. Then 0
a−→ 1 not provable.

Extend by constant 2 with 2
b−→ 1. Then 0

a−→ 1 is provable.
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Conservativeness for Disjoint Extensions

Theorem (Conservativeness for Disjoint Extensions)

Let T0 ] T1 be a disjoint extension of T0, where T0 is
source-dependent, and let φ ∈ T0. Let π be a well-supported proof
of H

φ in T0 ] T1. Then π is a well-supported proof of H
φ in T0.

Proof: induction using “source dependence measure” for positive
steps. For negative steps, uses modularity result to move
counterexamples from T0 to T0 ] T1.
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Soundness over Closed-instance Semantics

Theorem
For closed φ, if φ has a well-supported proof then it has a ground
well-supported proof.

Proof: Follows from the fact that φ has a closed well-supported
proof (instantiation closure).
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Conservativity over Closed-instance Semantics

Needs source dependence:

Example

Consider TSS T with deduction rule x
b−→ 1

0
a−→ 1

.

Then 0
a9 has a ground well-supported proof (no valid derivations

concluding 0
a−→ )

But no well-supported proof in T .
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Conservativity over Closed-instance Semantics

Theorem
In a source dependent system and closed φ, if φ has a ground
well-supported proof then it has a well-supported proof.

Proof: Follows from the fact that each derivation of s
l−→ s ′ for

closed s is closed.
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Contribution

Our notion satisfies:

I Consistency (s
l−→ s ′ and s

l9 can’t both be provable)

I Instantiation closure (if s is provable then so is σ(s))

I Modularity (under disjoint extensions, old proofs remain valid)

Assuming source dependent rules:

I Agrees with original notion on closed terms

I Conservativity (under disjoint extensions, no new proofs of old
formulae)
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Open Algebraic Laws

Consider an algebraic law, like

(x ; y); z ∼ x ; (y ; z)

As the language is (disjointly) extended, the domain of
quantification (x ,y ,z) increases. Ideal:

I we prove such laws in the “minimal subsystem” containing
just the rules for ;

I guaranteed to hold in any extension = any system containing
this notion of ;
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Fh-bisimulation

To prove such laws, we need to consider a notion of bisimulation
for open terms satisfying this modularity property.

fh-bisimulation is such a notion:

I if s R t and H

s
l−→ s ′

then H

t
l−→ t′

with s ′ R t ′

(usual ‘step’ condition, but under arbitrary hypotheses on
variables.)

This notion is modular – preserved by disjoint extensions.
[Mosses et al.(2010)Mosses, Mousavi, and Reniers]
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...with negative premises

I The work here can be used to adapt fh-bisimulation to the
negative setting.

I Modularity of the underlying well-supported proofs leads to
modularity for the proved equations.

I Another key issue: compositionality (bisimulation as a
congruence, via rule formats)
[Mousavi et al.(2007)Mousavi, Reniers, and Groote]
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PLanCompS vision

I A growing repository of fundamental constructs (like ;)
specified independently

I Laws about such constructs can be proved once and for all
I e.g. associativity/commutativity/unit laws

I Formal semantics can be given in an accessible manner by
translation into funcons

I Tool support – e.g. running programs

I Computational effects via the mechanics of Modular SOS
[Mosses(2004), Churchill and Mosses(2013)]

www.plancomps.org
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Conclusions

We:

I Extended well-supported proofs to open transition rules

I Proved consistency, instantiation, modularity, conservativity
results

Further directions:

I Use these results to support modularity of equational laws

I Consider compositionality of fh-bisimulation based on these
notions

I . . .

Thank You.
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