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Appendix A Proofs and Auxiliary Lemmas

Proof of Theorem 15. Let π denote the witnessing proof of φ. Let π� be the proof
σ(π) replacing each leaf σ(ψi) with ψi ∈ H by the corresponding well-supported

proof πi of
K

σ(ψi)
. We claim that π� witnesses K

σ(φ)
. We show this by induction

on π.
In the case of a hypothesis, then π� is some πi and φ is ψi, and we are done.
For the positive step, then π concludes with an application of a deduction

rule under substitution τ . Then π� concludes with the same deduction rule under
substitution σ ◦ τ .
For the negative case, suppose φ = s

l� so the root of π� is σ(K)

σ(s)
l�
. Let τ be

a substitution, φ� deny τ(σ(s)
l� ) = τ ◦ σ(s l� ) and π�� conclude φ�. Since π is a

well-supported proof, there exists ψ ∈ K with ψ� denying τ ◦ σ(ψ) occurring in
π��. But then σ(ψ) ∈ σ(K), ψ� denies τ(σ(ψ)) and ψ� occurs in π��, as required. ��
Proof of Corollary 16. i) By the construction in the proof of Theorem 15, if H is
empty then π� = σ(π) is a well-supported proof of σ(φ). ii) Suppose φ is closed.
Let σ map each variable to the source of φ. By (i), σ(π) is a well-supported proof
of σ(φ) = φ. But σ(π) is a closed proof, as required. ��
Proof of Theorem 17. We first show that the set of (provable ruloid) derivations
remains intact under instantiation. It trivially holds that if φ is a derivation
from H w.r.t. T , it is also a derivation w.r.t. T �. It thus remains to check the
implication in the reverse direction.We proceed by induction on the depth of the

derivation for H
φ .

If the derivation appeals to a hypothesis in H, then the provable ruloid is
clearly valid in T as well. Otherwise, φ must be positive and the set K of formulae

are placed above φ is such that K
φ is the result of applying a substitution σ to a

deduction rule d in T �. If d is in T , then the thesis follows from the induction
hypothesis. Otherwise if d is T � but not in T , it is the result of applying a
substitution σ� to a deduction rule d� from T . Hence, by applying σ ◦ σ� to d�,
one can obtain the instance K

φ . By induction, the proof subtrees for the ruloids

rooted in members of K can be reconstructed using deduction rules of T .
We must now show the same of well-supported proofs, i.e. a well-supported

proof π for H
φ in T � is a well-supported proof in T , and vice versa. We proceed

by induction on the proof. The case for hypotheses and instances of deduction
rules follow exactly as in the case for provable ruloids. For the negative case, let
H

s
l�
be the root of derivation π in T . We wish to show that it is also a derivation

in T �. To do this, we show that for each π� witnessing provable ruloid K

σ(s)
l−→ s�

in T �, a formula occurring in π� denies σ(h) for h ∈ H. Since any such provable
ruloid derivation is also one in T and π is a well-supported proof in T , we know
this is the case. The negative induction step from T � to T follows similarly. ��
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Lemma 36 Let T0 � T1 be a disjoint extension of T0. Let s be a term in the
signature of T0 � T1, and t, r be terms in the signature of T0. Let σ, τ be substi-
tutions such that σ(r) = τ(t) = s. Then there exists substitutions σ̂, τ̂ ∈ T0 and
ρ ∈ T0 � T1, such that σ = ρ ◦ σ̂, τ = ρ ◦ τ̂ and σ̂(r) = τ̂(t).

Proof. For a term s, define |s| by induction: |x| = 0, |f(s1, . . . , sn)| = 1 +
|s1| + . . . + |sn|. For terms s, t define d(s, t) as follows: d(x, t) = d(t, x) = |t|,
d(f(s1, . . . , sn), f(t1, . . . , tn)) = d(s1, t1) + . . .+ d(sn, tn) and
d(f(s1, . . . , sn), g(t1, . . . , tm)) =∞ for f �= g.

We proceed by induction on d(r, t). If d(r, t) = 0, then r and t are the
same up to renaming of variables. Since σ(r) = τ(t), there is a total surjective
relation R : vars(r) ↔ vars(t) such that xRy implies σ(x) = τ(y). Define an
equivalence relation on vars(r) by x1 ∼r xn if x1Ry1R

−1x2Ry2 . . . Ryn−1R
−1xn

where yR−1x if and only if xRy, and similarly for vars(t). Then x ∼r x
� implies

σ(x) = σ(x�), and similar for t. Let [x]r denote the least y with y ∼r x, and
similar for t. Let f : vars(r)→ vars(t) be defined by f(x) = [y]t for xRy. Then
τ(f(x)) = σ(x). Let g(x) = [x]t. Then f(r) = g(t). Let τ̂ send x ∈ var(t) to
in2([x]t) and x �∈ var(t) to in2(x). Let σ̂ send x ∈ vars(r) to in2(f(x)) and x to
in1(x) otherwise. Then σ̂(r) = in2(f(r)) = in2(g(t)) = τ̂(t). Let ρ = [σ, τ ]. Then
ρ ◦ τ̂ = τ : for x ∈ vars(t), ρ ◦ τ̂(x) = [σ, τ ] ◦ in2([x]t) = τ([x]t) = τ(x); otherwise,
ρ ◦ τ̂(x) = [σ, τ ] ◦ in2(x) = τ(x). Finally, ρ ◦ σ̂ = σ: for x ∈ vars(r), ρ ◦ σ̂(x) =
[σ, τ ] ◦ in2(f(x)) = τ(f(x)) = σ(x); otherwise ρ ◦ σ̂(x) = [σ, τ ] ◦ in1(x) = σ(x).

The case d(t, r) =∞ is impossible, since σ(r) = τ(t).

If 0 < d(t, r) < ∞, then (without loss of generality) there must be a po-
sition within r that is a variable x while the corresponding position within t
is a compound term f(t1, . . . , tn) where f is a symbol from T0, with σ(x) =
τ(f(t1, . . . , tn)). Let r

� be in1[x �→ f(in2(x1), . . . , in2(xn))](r) where x1, . . . , xn
are distinct variables. Let σ� = [σ, κ] where κ sends xi to τ(ti). Then σ�(r�) = s.
Now d(t, r�) < d(t, r) and so by inductive hypothesis there exists σ̂�, τ̂ ∈ T0 and
ρ such that ρ ◦ τ̂ = τ , ρ ◦ σ̂� = σ� and τ̂(t) = σ̂�(r�). Now, r� = µ(r) where
µ = in1[x �→ f(in2(x1), . . . , in2(xn))] and σ = σ� ◦ µ = ρ ◦ σ̂� ◦ µ. Set σ̂ = σ̂� ◦ µ.
Then ρ ◦ τ̂ = τ , ρ ◦ σ̂ = σ and σ̂(r) = σ̂� ◦ µ(r) = σ̂�(r�) = τ̂(t), as required. ��

Proof of Lemma 22. If ψ, φ and ω are negative, we may apply Lemma 36 to the
respective sources and we are done. If they are positive, we may proceed just as

in the proof of Lemma 36, treating
l−→ as a binary function symbol. ��

Proof of Theorem 28. Our inductive hypotheses require something stronger than
the stated theorem: we require that only the source and label of φ are in T0.

Derivations: We show that π is a derivation in T0, proceeding by induction.
Let s be the source of φ and l the label of φ.

If π just appeals to a hypothesis, then φ must itself appear in H and be in
T0, and so π is a derivation in T0, as required.

Otherwise, π must appeal to some deduction rule d under substitution σ.

Let d be of the form
{ρi : i ∈ I}

ρ . Let {πi : i ∈ I} be the set of formulae in the
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proof-tree placed immediately above each φi = σ(ρi). Let si be the source of φi,

li the label of φi and ri the source of ρi. Let φ = s
l−→ s� and ρ = r

l−→ r�.
Note that deduction rule d must be in T0, since otherwise the head symbol of

d is not in T0, which is impossible as σ(r) = s in T0.
We next show that, for each i: si and li are in T0 and πi witnesses the provable

ruloid Γ �

φi
in T0. Thus, the target of φi (if it has one) is in T0. For each variable x

in d, define δ(x) to be the ordinal witnessing the least number of steps required
to show that x is source-dependent according to the inductive definition. For
each i, define δi to be the maximal δ(x) such that x appears in ri. We show the
above claim by induction on δi.
Let Vi = {x ∈ vars(ρj) : δj < δi} ∪ vars(r). Then vars(ri) ⊆ Vi. By inductive

hypothesis, for δj < δi, φj ∈ T . Since φj = σ(ρj) ∈ T0, it follows that σ(x) ∈ T0

for each x in such a ρj . Similarly, since s = σ(r) ∈ T0, for all x ∈ vars(r),
σ(x) ∈ T0. So for all x ∈ Vi, σ(x) ∈ T0. Since ri ∈ T0 and vars(ri) ⊆ Vi,
φi = σ(ri) ∈ T . Further, li is in T , since it occurs in T0-rule d. We may then
apply the (outer) inductive hypothesis to see that πi is a derivation in T0 and so
the target of φi is in T0.
Finally, vars(r�) ⊆ vars(r)∪ {vars(ρi) : i ∈ I}. Any such variable is mapped to

a T0-term by σ. Then since r� ∈ T0, so is s
� = σ(r�).

The proof π applies deduction rule d (in T0) to the derivations πi (each in T0)
to derive transition φ (which is in T0). We can conclude that π itself is in T0.

Well-supported proofs: Let π be a well-supported proof of Γφ , we proceed

by induction on π.
If π appeals to a hypothesis or a deduction rule, we can proceed exactly as in

the provable ruloid case.

If φ is negative s
l� and the set {φi | i ∈ I} are immediately placed above

φ, each with a subproof πi, then we must show that for each provable ruloid

derivation π� concluding σ(s)
l−→ s� in T0, there is a formula in π

� denying some
σ(φi). Each such provable ruloid is also valid in T0 � T1 by applying Theorem

26. Since π is a well-supported proof in T0 � T1 of s
l� , there exists a formula

occurring in π� denying some σ(φi), as required. ��

Proof of Lemma 31. We remove each violating instance, one at a time. If s
l�

occurs above r
m� and s is not a variable, then s

l� cannot be a hypothesis. We
then replace

{φi : i ∈ I}
s

l� {ψj : j ∈ J}
r

m�

by
{φi : i ∈ I} ∪ {ψj : j ∈ J}

r
m�

(this preserves closedness). To see that this is still a

well-supported proof, let π witness a provable ruloid concluding σ(r)
m−→ r�. Then

there is a formula in π which denies either some σ(ψj) or σ(s
l� ). In the former
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case, we are done. Otherwise, σ(s)
l−→ s� occurs in π, and we may consider the

subderivation π� concluding σ(s)
l−→ s�, also a provable ruloid derivation. Since

its conclusion denies σ(s
l� ), there is a formula occurring in π� denying σ(φi).

But this formula then also occurs in π, and so the generated well-supported proof
is valid. ��
Proof of Proposition 34. Let π be the witnessing derivation, we show that π is
also witnesses the provable ruloid in closed(T ). We proceed by induction on φ. If
φ appeals to a hypothesis then since φ is closed, this is also valid in closed(T ).
Otherwise, π must appeal to some derivation rule d under substitution σ. Let d
conclude ρ from premises {ρi : i ∈ I}. Let {πi : i ∈ I} be the immediate children
of π, each proving φi. Let si be the source of φi, li the label of φi and ri the

source of ρi. Let φ = s
l−→ s� and ρ = r

l−→ r�.
We show that for each i premise, si is closed and πi is a provable ruloid in

closed(T ). We proceed by induction on δi. The variables of each ri appear r
�
j

for j < i and r. Since s = σ(r) and s�j = σ(r�j) are each closed, σ(x) is a closed
term for each variable in ri. Resultantly, si = σ(ri) is a closed term. We may
thus apply the (outer) inductive hypothesis to see that πi is a proof in closed(T ),
and s�i is closed. Finally, as all variables in r� appear in some r�j or r, we see
that s� = σ(r�) is also a closed term. Any instance of a rule in T applied to
closed terms is also an instance of a rule in closed(T ), and so π is a valid proof
in closed(T ). ��


