// Variable declarations, Statements, extending expressionsdeclarations
require "cinf-syntax.k"
require "cinf-declarations-funcons.k""cinf-statements-funcons.k"
require "cinf-declarations-values.k""cinf-statements-values.k"
module CINF
imports CINF-SYNTAX
imports CINF-DECLARATIONS-FUNCONSCINF-STATEMENTS-FUNCONS
imports CINF-DECLARATIONS-VALUESCINF-STATEMENTS-VALUES
syntax Expr ::= "value" "[[" Literal "]]" [function]
rule value[[ I:Int ]] => I
rule value[[ S:String ]] => S
rule value[[ true ]] => true
rule value[[ false ]] => false
rule value[[ cout ]] => standard-output
rule value[[ cin ]] => standard-input
rule value[[ endl ]] => "\n"
// default evaluation
// - evaluate lvalue expressions to an lvalue
// - evaluate other expressions to an rvalue
syntax Expr ::= "evaluate" "[[" Expression "]]" [function]
rule evaluate[[ I:Id ]] => evaluate_lval[[ I:Id ]]
rule evaluate[[ ++ E:Expression ]] => evaluate_lval[[ ++ E:Expression ]]
rule evaluate[[ -- E:Expression ]] => evaluate_lval[[ -- E:Expression ]]
rule evaluate[[ E1:Expression = E2:Expression ]] =>
evaluate_lval[[ E1:Expression = E2:Expression ]]
rule evaluate[[ E1:Expression , E2:Expression ]] =>
seq(effect(evaluate[[ E1 ]]), evaluate[[ E2 ]])
rule evaluate[[ E:Expression ]] => evaluate_rval[[ E ]]
// lvalue evaluation (undefined if parameter is not an lvalue-expression)
syntax Expr ::= "evaluate_lval" "[[" Expression "]]" [function]
rule evaluate_lval[[ I:Id ]] => bound-value(I)
rule evaluate_lval[[ ++ E:Expression ]] =>
supply(evaluate_lval[[ E ]],
assign-giving-variable(given, int-plus(stored-value(given), 1)))
rule evaluate_lval[[ -- E:Expression ]] =>
supply(evaluate_lval[[ E ]],
assign-giving-variable(given, int-minus(stored-value(given), 1)))
rule evaluate_lval[[ E1:Expression = E2:Expression ]] =>
assign-giving-variable(evaluate_lval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_lval[[ E1:Expression , E2:Expression ]] =>
seq(effect(evaluate[[ E1 ]]), evaluate_lval[[ E2 ]])
// rvalue evaluation
syntax Expr ::= "evaluate_rval" "[[" Expression "]]" [function]
rule evaluate_rval[[ L:Literal ]] => value[[ L ]]
rule evaluate_rval[[ I:Id ]] =>
stored-value(evaluate_lval[[ I ]])
rule evaluate_rval[[ E1:Expression = E2:Expression ]] =>
stored-value(evaluate_lval[[ E1 = E2 ]])
rule evaluate_rval[[ ++ E:Expression ]] =>
stored-value(evaluate_lval[[ ++ E ]])
rule evaluate_rval[[ -- E:Expression ]] =>
stored-value(evaluate_lval[[ -- E ]])
rule evaluate_rval[[ E:Expression ++ ]] =>
supply(evaluate_lval[[ E ]],
assign-giving-current-value(given, int-plus(stored-value(given), 1)))
rule evaluate_rval[[ E:Expression -- ]] =>
supply(evaluate_lval[[ E ]],
assign-giving-current-value(given, int-minus(stored-value(given), 1)))
rule evaluate_rval[[ + E:Expression ]] => int-plus(0, evaluate_rval[[ E ]])
rule evaluate_rval[[ - E:Expression ]] => int-minus(0, evaluate_rval[[ E ]])
rule evaluate_rval[[ ! E:Expression ]] => not(evaluate_rval[[ E ]])
rule evaluate_rval[[ E1:Expression * E2:Expression ]] =>
int-times(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression / E2:Expression ]] =>
int-div(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression % E2:Expression ]] =>
int-modulo(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression + E2:Expression ]] =>
int-plus(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression - E2:Expression ]] =>
int-minus(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression < E2:Expression ]] =>
int-less(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression > E2:Expression ]] =>
int-greater(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression <= E2:Expression ]] =>
int-less-equal(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression >= E2:Expression ]] =>
int-greater-equal(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression != E2:Expression ]] =>
not(equal(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]]))
rule evaluate_rval[[ E1:Expression == E2:Expression ]] =>
equal(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression && E2:Expression ]] =>
if-true(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]], false)
rule evaluate_rval[[ E1:Expression || E2:Expression ]] =>
if-true(evaluate_rval[[ E1 ]], true, evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression << E2:Expression ]] =>
output(evaluate_rval[[ E1 ]], evaluate_rval[[ E2 ]])
rule evaluate_rval[[ E1:Expression >> E2:Expression ]] =>
input(evaluate_rval[[ E1 ]], evaluate_lval[[ E2 ]])
rule evaluate_rval[[ E1:Expression , E2:Expression ]] =>
seq(effect(evaluate[[ E1 ]]), evaluate_rval[[ E2 ]])
syntax Comm ::= "execute" "[[" StatementSeq "]]" [function]
rule execute[[ E:Expression ; ]] => effect(evaluate[[ E ]])
rule execute[[ ; ]] => skip
rule execute[[ { SS:StatementSeq } ]] => execute[[ SS ]]
rule execute[[ { } ]] => skip
rule execute[[ if ( E:Expression ) S:Statement ]] =>
execute[[ if ( E ) S else { } ]]
rule execute[[ if ( E:Expression ) S1:Statement else S2:Statement ]] =>
if-true(evaluate_rval[[ E ]], execute[[ S1 ]], execute[[ S2 ]])
rule execute[[ while ( E:Expression ) S:Statement ]] =>
while-true(evaluate_rval[[ E ]], execute[[ S ]])
rule execute[[ BD:BlockDeclaration ]] => effect(elaborate[[ BD ]])
rule execute[[ BS:BlockStatement SS:StatementSeq ]] =>
seq(execute[[ BS ]], execute[[ SS ]])
rule execute[[ BD:BlockDeclaration SS:StatementSeq ]] =>
scope(elaborate[[ BD ]], execute[[ SS ]])
syntax Decl ::= "elaborate" "[[" DeclarationSeq "]]" [function]
rule elaborate[[ # include <iostream> ]] => bindings(.)
rule elaborate[[ using namespace std ; ]] => bindings(.)
rule elaborate[[ T:TypeSpecifier I:Id ; ]] =>
accum(bind-value(I, allocate(variables(type[[ T ]]))),
decl-effect(assign(bound-value(I), 0)))
rule elaborate[[ T:TypeSpecifier I:Id = E:Expression ; ]] =>
accum(elaborate[[ T I ;]],
decl-effect(assign(bound-value(I), evaluate_rval[[ E ]])))
rule elaborate[[ T:TypeSpecifier ID:InitDeclarator ,
IDL:InitDeclaratorList ; ]] =>
accum(elaborate[[ T ID ; ]], elaborate[[ T IDL ; ]])
rule elaborate[[ D:Declaration DS:DeclarationSeq ]] =>
accum(elaborate[[ D ]], elaborate[[ DS ]])
syntax Types ::= "type" "[[" TypeSpecifier "]]" [function]
rule type[[ bool ]] => booleans
rule type[[ int ]] => integers
configuration
<T>
<k> elaborate[[$PGM:DeclarationSeq]] execute[[$PGM:StatementSeq]] </k>
<env> .Map </env>
<given> no-value </given>
<store> .Map </store>
<output stream="stdout"> .List </output>
<input stream="stdin"> .List </input>
</T>
endmodule