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Abstract

Semantic specifications of programming languages typically have
poor modularity. This hinders reuse of parts of the semantics of one
language when specifying a different language — even when the
two languages have many constructs in common — and evolution
of a language may require major reformulation of its semantics.
Such drawbacks have discouraged language developers from using
formal semantics to document their designs.

In the PLANCOMPS project, we have developed a component-
based approach to semantics. Here, we explain its modularity as-
pects, and present an illustrative case study. Our approach provides
good modularity, facilitates reuse, and supports co-evolution of lan-
guages and their formal semantics. It could be particularly useful
in connection with domain-specific languages and language-driven
software development.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages; D.3.1 [Pro-
gramming Languages]: Formal Definitions and Theory; D.2.13
[Software Engineering]: Reusable Software

Keywords modularity; reusability; co-evolution; component-based
semantics; fundamental constructs; funcons; modular SOS.

1. Introduction

Various programming constructs are common to many languages.
For instance, assignment statements, sequencing, conditional
branching, loops and procedure calls are almost ubiquitous among
languages that support imperative programming; expressions usu-
ally include references to declared variables and constants, arith-
metic and logical operations on values, and function calls; and
blocks are provided to restrict the scope of local declarations. The
details of such constructs often vary between languages, both re-
garding their syntax and their intended behaviour, but sometimes
they are identical.

Many constructs are also ‘independent’, in that their contri-
butions to program behaviour are unaffected by the presence of
other constructs in the same language. For instance, consider con-
ditional expressions ‘E; 7 E2 : E3’. How they are evaluated is un-
affected by whether expressions involve variable references, side
effects, function calls, process synchronisation, etc. In contrast, the
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behaviour of a loop may depend on whether the language includes
break and continue statements.

We consider a semantic specification framework to have good
modularity when independent constructs can be specified sepa-
rately, once and for all. Such frameworks support verbatim reuse
of the specifications of common independent constructs between
different language specifications. They also reduce the amount of
reformulation needed when languages evolve.

It is well known that various semantic frameworks do not have
good modularity. For example, using structural operational seman-
tics (SOS) [39] we might start by specifying the evaluation of con-

ditional expressions as follows.

FE — Ei (1)
El?Eg : Eg,—) Ei?EQ : E3
true? s : B3 — Fo 2)
false? F> : B3 — Es3 (3)

The transition formula £ — E’ asserts the possibility of a step
of the computation of the value of E such that, after making the
step, E’ remains to be evaluated. The inference rule specifies
that computing the value of ‘E; 7 E : E3’ involves computing the
value of E; the axioms and specify how the computation
proceeds after E; has computed the value true or false. If the
computation of the value of E; does not terminate, neither does
thatof ‘E4 7 E> : E3’;if it terminates with a value other than true
or false, the computation of ‘Ey 7 E» : E3’ is stuck: it cannot
make any further steps.

If we are specifying the semantics of a simple imperative lan-
guage, we would specify the evaluation of an assignment expres-
sion ‘I = E’, assigning the value of E to a simple variable named 7,
as follows.

’pF (E,0) = (E',0")

pt(E,0) = (E'0")
pF(I=E,0) — (I=E' o)

ptI=V,0) = (V,olp(I) = V]) ®)

“)

The environment p represents the current bindings of identifiers
(e.g., to declared variables) and the store o represents the val-
ues currently assigned to variables. The formula p + (E,0) —
(E', ") asserts that, after making the step, E’ remains to be evalu-
ated, and o reflects any side-effects. Axiom (5) specifies that when
the value V' of E has been computed, it is also the value of the en-
closing expression; the resulting store o’ reflects the assignment of
that value to the variable bound to [ in p.

However, if conditional expressions are included in the same
language as the above assignment expressions, conventional SOS
requires their semantics to be specified using the same form of



transition formulae, p + (E,0) — (E’,0’), so we need to re-
formulate rules (TH3) as follows.

pt (E1,0) — (E1,0")

6
pl_(El?EQ:E3,0')—>(E1?E2:E3,0'/) ()
pt (true? Es : E3,0) — (E2,0) @)
pt (false? Ey : E3,0) — (E3,0) ®)

In effect, we have to weave the extra arguments of the required
transition formulae (here p, o and ¢”) into the original rules.

Different SOS rules would be needed for specitying conditional
expressions in other languages. For example, in a pure functional
language, the transition formulae could be simply p - E — E';
in a process language, they would involve labels on transitions,
e.g., E % E'. The notation used to specify a language construct
depends not only on the features of that particular construct, but
also on the features of all the other constructs in the language. This
flagrant disregard for modularity means that in conventional SOS,
it is simply not possible to specify the semantics of conditional
expressions (or any other programming constructs) once and for
all.

A further issue affecting potential reuse of parts of language
specifications is the common practice of using notation from the
concrete syntax of a language when defining its semantics. For
instance, the SOS rules illustrated above are based on the following
fragment of a grammar for expressions:

E:exp:=exp?exp:exp (&)

Such grammars provide a concise and suggestive specification of
the compositional structure of programs, and are generally pre-
ferred to the original style of abstract syntax specification devel-
oped by McCarthy [22]. They are typically highly ambiguous, but
semantics is defined on abstract syntax trees, making it indepen-
dent of parsing and disambiguation issues. Regarding modular-
ity, however, the use of concrete terminal symbols entails that our
SOS rules for ‘£ ? I/ : E” cannot be directly reused for a language
using different concrete syntax for conditional expressions, e.g.,
‘if EFthen Felse E’.

Without support for reuse and co-evolution, the development
and subsequent revision of a formal semantics for a major pro-
gramming language is inherently a huge effort, often regarded as
disproportionate to the benefits [13].

Our component-based approach to semantics addresses both the
above modularity issues. Its crucial novel feature is the introduction
of an open-ended collection of so-called fundamental constructs,
or funcons. Many of the funcons correspond closely to simplified
language constructs. But in contrast to language constructs, each
funcon has a fixed interpretation, which we specify, once and for
all, using a modular variant of SOS called MSOS [28§]]. For exam-
ple, the collection includes a funcon written ‘if-true(F1, E2, E3)’,
whose interpretation corresponds directly to that of the language
construct ‘E; ? E)> : E3° considered above.

To specify the semantics of a language, we translate all its con-
structs to funcons. Thanks to the closeness of funcons to language
constructs, the translation is generally rather simple to specify. For
instance, the translation of ‘E; ? E : E3’ is trivial, simply using
‘if-true’ to combine the translations of F1, E, E3; translation of
conditional expressions that have a different type of condition in-
volves inserting operations to test the value of Ej.

Each funcon has both static and dynamic semantics. Translation
of a language to funcons therefore defines both the static and
dynamic semantics of the language. Sometimes it is necessary to
adjust the induced static semantics by inserting further funcons.
For example, our ‘if-true’ funcon requires its second and third
arguments to have a common supertype, but the intended static

semantics of ‘Ey ? Ep : E3” might require checking for inclusion
between the minimal types of F» and E5. Funcons for making such
static checks have vacuous dynamic semantics.

The funcon specifications are expected to be highly reusable
components of language specifications. When the syntax or seman-
tics of a language construct changes, however, the specification of
its translation to funcons has to change accordingly (since we never
change the semantics of funcons) so the translation specification it-
self is inherently not so widely reusable. We explain all this further,
and provide some simple introductory examples, in Sect. 2}

The main contribution of this paper is in Sect. [3| where we illus-
trate the modularity and practical applicability of our approach by
presenting excerpts from a case study: a component-based seman-
tics of Caml Light [[18]. This language is used for teaching func-
tional programming, but also has imperative features. For selected
language constructs, we give conceptual explanations of the fun-
cons involved in their translations, and present the MSOS specifica-
tions of the semantics of the funcons. We have made the complete
case study available online We have also tested the correspon-
dence between our component-based semantics of Caml Light and
the standard implementation of the language, by running programs
using a (modular!) interpreter generated from the MSOS specifi-
cations of the funcons [1} 2]]. Preliminary tool support for our lan-
guage specifications is based on SDF [11]] and Prolog; the PLAN-
COMPS project [38] is developing further tool support. We are also
carrying out major case studies, to demonstrate the extent to which
funcons can be reused in specifications of different languages.

Finally, we discuss related work and alternative approaches in
Sect. ] before concluding and outlining further work in Sect. [}

2. Component-Based Semantics

In this section, we first explain the general concepts underlying
fundamental constructs (funcons), giving some simple examples.
We then consider how to specify translations from programming
languages to funcons. Finally, we recall MSOS (a modular variant
of SOS) and show how we use it to specify, once and for all, the
static and dynamic semantics of funcons.

2.1 Funcon Syntax

As mentioned in the Introduction, many funcons correspond closely
to simplified programming language constructs. However, each
funcon has fixed syntax and semantics. For example, the funcon
written assign(E1, F2) always has the effect of evaluating F to a
variable, F» to a value (in any order), then assigning the value to the
variable. In contrast, a language construct written ‘Eq = Ep’ may
be interpreted as an assignment or as an equality test, depending on
the language.

Signatures The signature of a funcon determines its name, how
many arguments it takes (if any), the sort of each argument, and
the sort of the result. For any sort X of values, let comp(X) be
the sort of computations which, whenever they terminate normally,
compute values of sort X . The following computation sorts reflect
fundamental conceptual distinctions in programming languages.

e The sort of commands comm = comp(skip) is for funcons that
are executed for their effects: the sort skip has only one value.

e The sort of expressions expr = comp(value) is for funcons
that compute values of the language-dependent sort value (they
might also have effects).

e The sort of declarations decl = comp(env) is for funcons that
compute environments, mapping identifiers to values.

Uyww . plancomps . org/churchill2014
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assign(var, value) : comm
assigned-value(var) : expr
bound-value(id) : expr

effect(value) : comm

given : expr
if-true(boolean, comp(X), comp(X)) : comp(X)
)) : comp(X)
)) : comp(X)
) :

while-true(expr, comm

seq(skip, comp(X
supply(value, comp(X

comm

Table 1. Some funcon signatures

Note that comp(X) includes X as a subsort: we regard values as
terminated computations.

Table [T] shows the signatures of some funcons. The funcons
if-true (conditional choice), seq (sequencing) and supply (value-
passing) are polymorphic: the sort variable X in their signatures
may be instantiated (uniformly) with any value sort.

The following sorts used in Table[T]are all value sorts: boolean
(the values false and true), id (identifiers, denoting values given
by bound-value), skip (the value skip), value (all values) and
var (imperative variables). Further value sorts include familiar data
types such as int (the unbounded integers) and instances of generic
data types such as /list(X) and map(X,Y"). Abstraction values of
sort abs( X, Y') are formed from computations. New value sorts can
be defined using algebraic data types and subsort inclusions.

Lifting We can lift operations from value sorts to computation
sorts. For example, consider the negation operation not(boolean) :
boolean. By lifting the signature to not(expr) : expr we can use
not as a funcon. The value of not(E) is computed by first com-
puting the value of F, then (provided that this is a boolean value)
applying the negation operation. The same principle applies to fun-
cons with a value sort argument, such as assigned-value. Its lifted
signature is assigned-value(expr) : expr, and the computation of
the argument value is followed by applying the original funcon to it.
When we lift value operations and funcons with two or more value
sort arguments, the argument values may be computed in any order;
the funcons given and supply can be used to restrict to sequential
evaluation of lifted arguments, when required, as illustrated below.

The lifted signatures determine a set of well-sorted terms for
each sort. The well-sortedness of a funcon term is independent of
its context.

2.2 Language Semantics

We next consider how to specify translations from programming
languages to funcons. The translation of complete programs to
funcon terms determines the static and dynamic semantics of the
programs.

The starting point for specifying a translation to funcons is a
context-free grammar for the abstract syntax of the source lan-
guage. We define functions mapping abstract syntax trees gener-
ated by the grammar to terms of the appropriate computation sorts.
The functions are compositional: the translation of a composite lan-
guage construct is a combination of the translations of its compo-
nents. We specify the translation functions inductively, by equa-
tions (much as in denotational semantics).

The following examples illustrate how to specify the translation
of some simple language constructs to funcons. Their main purpose
is to show the form of the equations used to define the translation
functions. Section [3] provides excerpts from a component-based

semantics for a complete language, demonstrating how our ap-
proach scales up, and how to translate some less straightforward
language constructs to funcons.

Expressions Let exp be the nonterminal symbol for expressions
in some programming language. We specify that the function
expr[-] translates abstract syntax trees generated by exp to fun-
con terms of sort expr thus:

expr[exp] : expr

Using the name ‘expr’ for both the function and its target sort
makes it easy to see that our funcon terms below are well-sorted.
Note that language constructs are always inside [- - -], and funcons
outside, so clashes of notation between them are insignificant. Let
the meta-variable E, optionally subscripted and/or primed, range
over abstract syntax trees generated by exp.

Recall the conditional expressions specified in SOS in Sect.
‘When their conditions are boolean-valued, the intended semantics
of these expressions correspond exactly to the semantics of the
funcon if-true (lifted from boolean to expr in its first argument),
so we can specify their translation very simply indeed:

expr[E1? Es : B3] = ’ exp = exp?exp: exp‘
if-true(expr [En], expr[E-2], expr[E3]) (10)
The variant where E' is a numerical expression can be specified by

inserting the appropriate value operations to compute true when
the value of E is non-zero, and false otherwise:

expr [[El ?FEs Eg]] =

if-true(not(equal(expr [E1],0)), (11)
expr [E2], expr[Es])

Notice that the well-sortedness of the terms in the above equation
comes from lifting the value operations not and equal to the com-
putation sort expr. Lifting also allows the following straightforward

translation of equality test expressions.

expr[Ey == Ex] =
equal(expr[E1], expr[E2]) (12)

To specity left-to-right evaluation of F1, F»>, we can use the fun-
cons supply and given, as follows.

expr[E1==Ex] =
supply(expr[E1], equal(given, expr [E-])) (13)

When identifiers can be bound only to (imperative) variables, we
translate an identifier / occurring in an expression so that it gives
the value currently assigned to the variable:

expr[I] =
assigned-value(bound-value(id[I])) (14)

If identifiers can also be bound to other sorts of values, we use a
funcon (not illustrated here) that inspects the assigned value when
its argument is a variable, and otherwise returns its argument.

Statements Let stm be the nonterminal symbol for statements S
in some programming language. The corresponding sort of funcons
is comm (commands), so we use the following translation function.

comm [[stm] : comm

An assignment statement ‘I = ' ;’ corresponds to a straightforward
combination of the assign and bound-value funcons:

comml= ] =

assign(bound-value(id[I]), expr [E]) (15)



The following translation of assignment expressions illustrates re-
peated use of a previously computed value.

corli= 5] =
supply(expr[E], (16)
seq(assign(bound-value(id[I]), given),

given))
The combination of assignment expressions and the following
expression-statements (which discard the value of E) makes the
separate specification of assignment statements in (15) redundant.

effect(expr[E]) (17)

Our translation of if-else statements uses the same polymorphic if-
true funcon as that of conditional expressions above:

comm[E ;] =

’ stm ::= if (exp) stmelse stm ‘
comm[if (E) Sy elseSo] =
if-true(expr [E], comm [S1], comm [S2]) (18)

For if-then statements without an else-part, we can exploit the usual
‘desugaring’, which we specify by the following equation.

comm[if (E) S| = ’stm::: if(exp)stm‘
comm[if (E) Selse{ }] (19)

Provided that we do not introduce circularity between such equa-
tions, they give the effect of translating a language to a kernel sub-
language, followed by translation of the kernel constructs to fun-
cons. When the grammar of the kernel is of particular interest, we
could exhibit it, and separate the specification of desugaring from
the specification of the translation of the kernel to funcons.

The translation of the empty statement ‘{ }” used above is as
simple as one might expect:

comm[{ }] =
skip

While-statements correspond exactly to our while-true funcon
(without any lifting):

comm [while(E) S] =
while-true(expr [E], comm [S]) (1)

’ stm ::= while (exp) stm ‘

Our final illustrative example of specifying translations demon-
strates a technique used frequently in our Caml Light case study in
Sect. 3] Statement sequences may consist of more than two state-
ments, but our seq funcon for sequencing commands takes only
two arguments. In the following equation, we use ‘- - - * formally as
a meta-variable ranging over stm” (possibly-empty sequences of

statements).
3] (22)

To translate a sequence of just two statements, ‘S1 S2 - - -’ matches
‘...” with the empty sequence, and we can then regard ‘S2 ---’
as a single statement, whose translation is specified by our other
equations. To translate a sequence of three or more statements,
‘S1 Sz -+ matches with a non-empty sequence, and we
can use the above equation recursively to translate ‘S ---’. For
instance, the above equations translate a sequence of the form
‘S1 Sz S3” to a funcon term seq(C1,seq(C2, C3)), where each
C; is the translation of the single statement S;.

We give many further examples of specifying translations from
language constructs to funcons in Sect. 3]

comm|[S1 Sz -] =

seq(comm [S1], comm Sz - -

3 s

2.3 Funcon Semantics

The preceding subsections illustrate how we use sorts and signa-
tures to specify the syntax of funcons, and how we specify transla-
tion functions that map programs to funcon terms. We now explain
how to specify the semantics of each funcon, once and for all.

MSOS Modular SOS [28] is a simple variant of structural opera-
tional semantics (SOS). It allows a particularly high degree of reuse
without any need for reformulation. The specification of each lan-
guage construct in MSOS is independent of the features of the other
constructs included in the language. This is achieved by incorporat-
ing all auxiliary entities used in transition formulae (environments,
stores, etc.) in labels on transitions. Thus transition formulae for

expressions are always of the form E RN (and similarly for
other sorts of constructs).

The MSOS notation for labels ensures automatic propagation
of all unmentioned auxiliary entities between the premise(s) and
conclusion of each rule. For this to work, the labels on adjacent
steps of a computation are required to be composable, and a set of
unobservable labels is distinguishedﬂ

For example, the following MSOS rules for conditional expres-
sions ‘1 7 Fa : E3’ could be used for both imperative and for
purely functional languages:

L

E=FE
E 5 B @3)

(BE17Ey : Bs) & (B, 7 Ey : Es)
(true? Ez : B3) = E» (24)
(false?F»: E3) 5 B3 (25)

The variable 7 varies over all unobservable labels. By not mention-
ing specific auxiliary entities, the rules assume neither their pres-
ence nor their absence, ensuring reusability. This also makes the
rules significantly simpler to read.

The MSOS rules for assignment expressions are as follows.

L

E = B
L /
E E
— (26)
(I=FE) = (I=FE")
(I=V) p,o,0' =clp(I)—V],T Vv (27)

The notation used on the transition arrow in above indicates
that when assignment expressions are included in a language, the
labels on transitions are to have an environment p and a pair of
stores o, o’ . The inclusion of 7 in a label specifies that any further
components must be unobservable.

If we include the above conditional expressions and assignment
expressions in the same language, no changes at all are needed — in
marked contrast to the weaving that would be required in SOS, as
illustrated in Sect.[1}

I-MSOS Although MSOS successfully addresses the modularity
issues of SOS, the requirement to label all transitions is an un-
welcome notational burden. The Implicitly-Modular SOS (I-MSOS)
framework [34] combines the benefits of MSOS regarding reusabil-
ity with the familiar notational style of ordinary SOS: auxiliary
entities not actually mentioned in a rule are implicitly propagated
between its premise(s) and conclusion, without requiring the intro-
duction of explicit labels on transitions.

2In fact labels in MSOS are the morphisms of a category, and the unob-
servable labels are identity morphisms.



All that is needed is to declare the notation used for the tran-
sition formulae being specified (which is in any case normal prac-
tice in SOS descriptions of programming languages, e.g. [37]), dis-
tinguishing any required auxiliary arguments from the syntactic
source and target of transitions. Here, we do this by insisting on
some notational conventions commonly followed in SOS:

e Environments p (and any other entities that are preserved
by successive transitions) are written before a turnstile, e.g.,
envp-E — E'.

e Stores o (and any other entities that can be updated by tran-
sitions) are written after the syntactic source and target, e.g.,
(E,storec) — (E',stored’).

e Signals € (and any other entities emitted by transitions) are
exception & E,

written as labels on transition symbols, e.g., E
The markers such as env, store and exception are used in case
further entities are needed in the same position.

The I-MSOS rules for conditional expressions are formulated
exactly as (TH3) in Sect. [I} those for assignment expressions need
to be augmented with ‘store’ markers, but entities propagated be-
tween the premise and conclusion of a rule can be left implicit:

’ envp - (E,stores) — (E’, stored’) ‘

E - FE
(I=E) = (I=E)

envp bk (I=V,storeog) — (V,storec[p(I) — V1) (29)

(28)

When specifying funcons, the so-called ‘patience’ rules for evalu-
ation of lifted arguments are left implicit, which significantly im-
proves the conciseness of our specifications. For instance, the sec-
ond argument V> of assign below can be lifted from value to
expr, but the rule for its patient evaluation, corresponding to (28),
does not need to be given.

It is straightforward to generate MSOS rules directly from I-
MSOS rules (and label categories from transition formulae decla-
rations). The foundations of MSOS [28]], together with its recently
developed modular bisimulation theory and congruence format [7],
provide correspondingly modular foundations for I-MSOS specifi-
cations.

Typing Rules MSOS and I-MSOS can also be used to specify
typing rules, allowing auxiliary entities such as typing contexts to
be left implicit in most rules. Typing formulae such as £ : T
are similar to big-step evaluation formulae, where an expression
(statically) computes a type. Following convention, we denote the
current typing context by I'. When specifying typing rules for a
funcon with arguments of value sorts, the arguments are lifted to
expressions.

I-MSOS Specifications of Funcons The following I-MSOS rules
define the semantics of the funcons whose signatures are listed in
Table E} In these rules the meta-variable C' ranges over comm,
D over decl, E over expr, T over type, V over value, and X over
arbitrary computations (including their computed values).

Assignment commands: ’ (C,storeo) — (C’,storea”’) ‘

(assign(V1, V2), store o) — (skip, storec[Vi — V2])  (30)

C' : comm

E:var(T), E»: T 31)

assign(E1, Ez) : comm

A well-typed command has a unique type, written comm.

Variable references:

(assigned-value(V'), store o) —

E :var(T)
assigned-value(F) : T

Identifier references:

env p - bound-value(I) — p(I)

env I F bound-value(I) : I'(1)

Side-effects:
effect(V) — skip

E:T
effect(F) : comm

Given value:

givenV - given —» V

givenT F given : T

Conditional choice:
if-true(true, X1, X5) — X1
if-true(false, X1, Xo) — X

FE :boolean, X, : T, Xo: T
if-true(E, X1, X2) : T

Sequencing:

seq(skip, X) —» X

C:comm, X : T
seq(C, X): T

Supplying a value:
givenV X — X'

(E,storec) — (E’',storec’)

(o(V), store o) (32)

E:T

(33)

envp-E — E’
(34)

envl'HFE:T
(35)

C =’
(36)

i

:comm

(37)

’givenVl—E—)E'
(38)

givenT - E:T'
(39)

E— F
(40)
41

(44)

’givenVl—X—)X’

given _ I supply(V, X) — supply(V, X)

given _ I supply(V1, Vo) — Va

givenTh F E:T

givenT X : T’

given T} I supply(E, X) : T"

(45)
(46)

givenT - X : T’

(47)



While-loops: C -’
while-true(E, C) —
if-true(E, seq(C, while-true(E, C)), skip) (48)
FE : boolean, C': comm 49)

while-true(E, C) : comm

Soundness Funcons have signatures specifying the maximal sorts
in which each argument and the resulting terms are contained, with
respect to a natural subtyping relation. Value sorts (as an open-
ended set), together with types of the form abs(Ti,T%) (corre-
sponding to abstractions at the typing level) define syntactic types
that can be used to type funcon terms, thus making it possible to
specify inductively minimal sorts of computed values. Each funcon
is associated to a typing rule which allows us to derive typing judge-
ments for all the related terms, given a typing assignment for the
identifiers in the environment (i.e., a typing context). Well-formed
terms, constructed by application of funcons to arguments accord-
ing to their signatures, are meant to be those that can be typed.

We have polymorphism, needed for languages like Caml Light
and Java, and deal with it by simply allowing for identifiers that
represent type variables, mapped to types by the environment. The
type of a funcon term thus depends on the typing context, as well
as on type parameters. For example, the funcon bound-value has a
typing rule such that when the argument / (an identifier) is assigned
type T in the typing context I', bound-value(T) also has type T —
this holds when 7' is a value sort such as bool, as well as when it is
a type expression depending on type variables.

All the dynamic rules for the funcons used in our component-
based semantics of Caml Light are type preserving. This guarantees
type soundness, in the sense that if the translation of a Caml Light
expression to a funcon term has type 7" and it computes a value V,
then V is included in the set of values determined by 7'.

3. An Illustrative Case Study

Caml Light descends from Caml, a predecessor of the language
OCaml, and is similar to the core of Standard ML [24]. It has first-
class functions, assignable state, exception handling mechanisms,
and pattern matching. It is statically typed, and supports algebraic
data types and polymorphism.

The syntax and semantics of Caml Light are specified in its ref-
erence manual [18]]. It contains a formal context-free grammar of
‘concrete abstract syntax’: this generates Caml Light programs, but
disambiguation details are abstracted away. However, the explana-
tion it gives of the intended semantics is completely informal.

In this section, after introducing the syntax of Caml Light, we
illustrate our approach by presenting excerpts from a component-
based semantics of the language. Section [3.2]gives an overview of
the required values and funcons; Sect. eciﬁes the translation
of Caml Light abstract syntax (trees) into combinations of funcons;
and Sect. [3.4] specifies the static and dynamic semantics of the fun-
cons using [-MSOS. The full specifications can be found onlineE]

3.1 Caml Light

Caml Light is a language built around expressions which compute
values, including numbers, strings, function abstractions, tuples
and lists. Commands (or statements) are not a separate syntactic
category, but rather expressions that compute a particular null
value, written (). Expressions are given a type, which includes
ground types (e.g. int), tuple types (e.g. int*int) and function
type (e.g. int->int). Commands and () have type unit.
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let rec (fib : int -> int) = fun n ->
if n < 2 then n else fib(n-1) + fib(n-2);;

let rec append zs ys =
match zs with
I 00 ->ys
| x::xs -> x::(append xs ys);;

let insertion_sort a =
for i = 1 to array_length a - 1 do
let val_i = a.(i) in
let j = ref i in
while !j > 0 & val_i < a.(!j - 1) do
a.(1j) <= a.(!'j - 1);

j=13-1
done;
a.('j) <- val_i

done;;

Table 2. Example Caml Light programs

Some example Caml Light programs can be found in Table
First, we see a recursively defined Fibonacci function f£ib, with
the explicit type int->int. The function is defined using the fun
constructor, introducing a closed function abstraction. Identifiers
may be bound to particular values within an expression using let
bindings, and recursive functions using the let rec construct.
Formal arguments can also appear as parameters before the ‘=",
as in the definitions of append and insertion_sort.

As well as expressions, values and types, Caml Light supports
matching values against patterns which bind identifiers. This is
demonstrated in the append example, where the first argument zs
is matched against two patterns: the empty list [], and the list-
constructor pattern x: : xs, which binds x to the head and xs to the
tail of a nonempty list.

Caml Light also supports imperative behaviour, as can be seen
in the insertion_sort example, acting on an array. Arrays are
mutable: their content may be updated. An assignable reference
cell is constructed using ref, and it may be accessed using explicit
dereferencing ‘!’ and updated using ‘:=". In this example we also
see two different looping constructs.

An extract of the Caml Light reference grammar is given in
Table 3] (using meta-variables as nonterminal symbols, for brevity).

3.2 Values and Funcons

In Sect. 2] we introduced some basic funcons for commands and
expressions. We next consider the further funcons used in our Caml
Light case study, involving declarations, abstractions, patterns and
exception handling. They are listed in Table ] together with their
signatures. We discuss their semantics informally here, focusing
on dynamic semantics; see Sect.[3.4]for their formal specifications,
including static semantics.

Declarations We bind an identifier to a particular value in a
declaration using the bind-value funcon. To limit the visibility of a
declaration to an arbitrary computation, we use the scope funcon,
which is lifted to act on declarations in its first argument.

Abstractions  Values of sort func are function abstractions which
compute a value from a given value: func = abs(value, value).
Such abstractions can be constructed using the binary abs con-
structor, which abstracts an expression over a given pattern. They
can be turned into self-contained function closures using the
close funcon, to ensure static scoping. Abstractions may be ap-
plied to argument values using the apply funcon. The abstraction
prefer-over( A1, As) applies A1, but then applies A if A; fails.
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Constants
C ::= () | [1 ]| literals for numbers, characters, strings
Expressions
E:=I|C|(E) |veginEend | (E:T)
|EGE | KE|E::E|[E(GE)"]
[IEGE) 11 {L=EGL=E)}
| EE|OpE|EOpE|E & E|E or E
|E.L|E.L<-E|E.(E)|E.(E)<-E
| if Ethen E (else E)’ | while E do F done
| for [ =E (to|downto) E do E done
| E; E | match Ewith SM | fun MM
| function SM | try Ewith SM

| 1et (rec)’ LB (and LB)* in E
Simple Matchings
SM :=P->E (| P->E)"
Multiple Matchings
MM =:=P*->E (| Pt ->E)"
Let Bindings
LB:=P=E|IP'=E
Patterns
Pu=I|_|PasI|(P)|(P:T)|PIP
|C|KP|P(,P)"|[1|P::P
[ LPGP) 1[{L=P(;L=P)"}
Type Expressions
Tu= 1|(T)|T->T|T 1)

Table 3. An extract of the Caml Light reference grammar, with
EBNF replaced by -*, -7, ?, and nonterminals by meta-variables
(I ranges over identifiers, K over constructors, and L over labels)

Patterns A pattern is another sort of abstraction, computing an
environment from a given value: patt = abs(value, env). An
example pattern is any, which matches any value and produces
no bindings, accurately modelling the ‘_* wildcard in Caml Light.
The funcon only takes a value and matches just that value, again
producing no bindings. The pattern bind(/) matches any value,
and binds I to it. Compound patterns may be constructed out
of more primitive patterns. For example, if F' is a binary data
constructor, the pattern invert F' (Pi, P;) will match values of
the form F'(X,Y) provided X matches P; and Y matches P-,
combining the generated bindings.

Exceptions The computation throw(V) terminates abruptly, and
so can be seen to compute a value of any sort, vacuously. The catch
funcon handles abrupt termination of its first argument by applying
a function to the thrown value. The catch-else-rethrow funcon is
a variant on this: it rethrows the exception should it fail to be in the
domain of the handler.

abs(expr) : func
abs(patt, expr) : func

accum(env, decl) : decl
any : patt

apply(func, value) : expr
bind(id) : patt

decl

: expr

bind-value(id, value) :

~—

catch(expr, func

~—

catch-else-rethrow(expr, func) : expr

NN

close(func) : expr

closure(comp(X), env

~

: comp(X)
else(comp(X), comp(X)

~

: comp(X)
generalise-all(decl) : decl

instantiate-if-poly(expr) : expr

invert F' (patt, ..., patt) : patt

match(value, patt) : decl

only(value) : patt

patt-union(patt, patt) : patt
prefer-over(abs(X,Y ), abs(X,Y)) : abs(X,Y)
restrict-domain(abs(X,Y), type) : abs(X,Y)
scope(env, comp(X)) : comp(X)
throw(exception) : comp(X)
when-true(boolean, comp(X)) : comp(X)

Table 4. Funcon signatures (see also Table[T)

id[I] :id Identifiers
value[C] : value Constants
expr[E] : expr Expressions
abs[SM] : abs Simple Matchings
decl[LB] : decl Let Bindings
patt[P] : patt Patterns
type[T] : type Type Expressions

Table 5. Translation function signatures

3.3 Language Semantics

We translate Caml Light (abstract syntax trees) into funcon trees.
The signatures of the translation functions are listed in Table [
For Caml Light, the value sort contains ground constants (integers,
Booleans, strings, floats, chars) as well as records (maps, wrapped
in a data constructor), variants for disjoint unions (a value tagged
with a constructor), tuples, and functions (as abstractions).

We next show some of the equations specifying the translation
of Caml Light programs to funcon terms. We will first consider
dynamic semantics, specifying a translation which captures the
intended runtime behaviour. Often, this translation will also capture
the static semantics correctly (since each funcon by design has a
natural combination of dynamic and static semantics). If it does



not, we may need to add funcons to the translation to reflect the
intended compile-time behaviour.

3.3.1 Dynamic Semantics

Conditional Caml Light’s conditional construct on Booleans is
translated straightforwardly into the if-true funcon we have already
seen:

expr[if E; then E; else E3] = (50)

if-true(expr [E\], expr[Ez], expr [E3])

Note that here we are lifting if-true to be applied to computations
that might compute a Boolean in the first argument, from the base
signature if-true(boolean, comp(X), comp(X)) : comp(X).

Lifting can also be applied to pure data operations, such as
not(boolean) : boolean.

expr [not E1] = not(expr[E1]) (51

We also use the if-true funcon to provide meaning to other
productions, e.g., Caml Light’s Boolean ‘and’ operator:

expr[E1 & Eq] = (52
if-true(expr [E1], expr [ E2], false)

Sequencing The sequencing construct of Caml Light is translated
as follows:

expr[E1 ; Ez] = (53)
seq(effect(expr[E1]), expr[E2])
Here, we explicitly discard the computed value of the first ex-
pression, using the effect funcon.

Pattern matching We translate Caml Light’s simple matching
construct SM to a function abstraction using abs [_]. Our analysis
of a match expression is as an application of such an abstraction to
the matched expression, inserting prefer-over to take into account
what happens when the pattern fails to match the given value:

expr[match Ewith SM] = (54)
apply(prefer-over(abs[SM],
abs(any, throw(’Match_failure?))), expr[E])

Function application The funcon apply corresponds directly to
Caml Light’s call-by-value function application:

expr[E1 E2] = apply(expr[E1], expr[E-]) (55)

The signature of apply indicates that it should be applied to an
abstraction and an argument value, which is then lifted to take a
computation argument. We would specify call-by-name semantics
by forming a (parameterless) abstraction from the argument expres-
sion, to prevent its premature evaluation.

Function abstraction Caml Light is a functional language, and
we represent functions as abstraction values. We use the close fun-
con to specify static bindings, and also specify what should happen
if the simple matching SM fails to match the given argument.

expr[function SM] = (56)
close(prefer-over(abs [SM],
abs(any, throw(’Match_failure’))))
Simple matchings We will next see how abs[_] translates simple
matchings SM to abstractions. For a single body, the binary abs

funcon captures matchings accurately; sequences of simple match-
ings are combined using prefer-over.

abs [Py -> E1] = abs(patt [P1], expr[E1]) (57)

abs[Py->Ey | Py->Ey -] = (58)
prefer-over(abs [P, -> E1], abs[P2 -> Es --+])
Declarations Local declarations are provided in Caml Light by
the ‘let LB in E’ construct, corresponding to the scope funcon:

exprlet LB in E] = scope(dec! [LB], expr[E]) (59)
Value-definitions are translated to declarations:
decl[P=E] = (60)
match(expr [E], prefer-over(patt [ P],
abs(any, throw(’Match_failure’))))
An identifier expression refers to its bound value.
expr[I] = bound-value(id[I]) (61)
The preceding two equations account for dynamic semantics. To

accurately model Caml Light’s let-polymorphism, further details
are required, which we will outline in Sect. below.

Catching exceptions Caml Light’s try construct corresponds di-
rectly to the catch-else-rethrow funcon:

exprtry Ewith SM] = (62)
catch-else-rethrow(expr [ E], abs [SM])

Also here, a more refined analysis will be required to accurately
capture Caml Light’s static semantics.

Basic Patterns We have funcons corresponding directly to Caml
Light’s basic patterns.

patt [I] = bind(id [I]) (63)
patt[] = any (64)
patt[C] = only(value[C]) (65)

Compound data Caml Light expressions include tupling. We rep-
resent tuple values using the tuple-empty and binary tuple-prefix
data constructors. These are lifted to computations in the usual way.
We use a small auxiliary translation function expr-tuple [_]:

expr[Ey , Bz ---] = expr-tuple[Ey , B2 ---] (66)

expr-tuple[E1] = (67)
tuple-prefix(expr [ E1], tuple-empty)

J= (68)
tuple-prefix(expr [E1], expr-tuple[E2 ---])

expr-tuple[E1 , Eo --

The translation of the corresponding pattern constructors involves
invert I’ (where F' can be an arbitrary data constructor).

patt[P , P, - -] = patt-tuple[P1 , P> -] (69)

patt-tuple[P1] = (70)
invert tuple-prefix(patt [ P1], only(tuple-empty))
patt-tuple[P1 , P> -] = (71)
invert tuple-prefix(patt [ P1], patt-tuple [Pz - --])

Compound patterns Patterns may also be combined using se-
quential choice, reusing the prefer-over funcon.

patt[ Py | P;] = prefer-over(patt [P1], patt [P:]) (72)
One may also bind an identifier to the value matched by a pattern:
patt [P as I] = patt-union(patt [P], bind(id [I])) (73)



3.3.2 Accounting for Static Semantics

The translation specified above accurately reflects the dynamic se-
mantics of Caml Light programs. The funcons used in the trans-
lation also have static semantics, which provides a ‘default’ static
semantics for the programs. In most cases, this agrees with the in-
tended static semantics of Caml Light — but not always. In such
cases, we modify the translation by inserting additional funcons
which affect the static semantics, but which leave the dynamic se-
mantics unchanged. We consider some examples.

Catching exceptions The translation of try Ewith SM above
(62) allows any value to be thrown as an exception and caught by
the handler. In Caml Light, however, the values that can be thrown
and caught are restricted to those included in the type exn, so
static semantics needs to check that abs [SM] has type exn->X
for some X. This can be achieved using restrict-domain(A, T),
which has a type only if the argument type of the abstraction A
is T', and which dynamically behaves just like A.

exprtry Ewith SM] = (74)
catch-else-rethrow(expr [ E],
restrict-domain(abs [SM],
bound-type(typeid(’exn’))))

Using polymorphism Caml Light has polymorphism, where a
type may be a type schema including universally quantified vari-
ables. The interpretation of variable inspection, using just the
bound-value funcon, does not account for instantiation of poly-
morphic variables. We can rectify this as follows.

expr[I] = instantiate-if-poly(bound-value(id[I])) (75)

The funcon instantiate-if-poly takes all universally quantified
type variables in the type of its argument, and allows them to be
instantiated arbitrarily; it does not affect the dynamic semantics.

Generating polymorphism Expressions with polymorphic types
in Caml Light arise from let definitions, where types are generalised
as much as possible, up to a constraint regarding imperative be-
haviour known as value-restriction [42]. The appropriate funcon is
generalise-all, which finds all generalisable types in its argument
environment and explicitly quantifies them, universally. Whether
this generalisation should be applied is determined entirely by the
outermost production of the right-hand side (£) of the let defini-
tion.

decl | P = E] = generalise-all(dec/-mono [P = E]) (76)
if F is generalisable

decl [P = E]| = decl-mono [P = EJ 77
if E is not generalisable
The translation funcon decl-mono[] is the same as the version of
decl[] specified in Sect. for dynamic semantics.
decl-mono[P=E] = (78)
match(expr [E], prefer-over(patt [ P],
abs(any, throw(’Match_failure?))))

Assignment and dereferencing In Caml Light, many built-in op-
erators (e.g., assignment, dereferencing, allocation, and raising ex-
ceptions) are provided in the initial library as identifiers bound to
functions (and may be rebound in programs). We reflect this by
using the funcon scope to provide an initial environment to the
translations of entire Caml Light programs.

3.4 Funcon Semantics

In Sect. we explained and illustrated how to define the static
and dynamic semantics of some simple funcons using Implicitly-
Modular SOS [34]. We now define some further funcons used in
the semantics of Caml Light, involving abstractions, environments,
patterns, etc. See Table[d] for the signatures of the funcons.

3.4.1 Scoping

We represent bindings of identifiers to values by environments p.
The environment {I — V'} maps I to V; p1/p2 is the environ-
ment where bindings in p; override bindings for the same iden-
tifiers in p2. The current environment is preserved by successive
transitions, so in I-MSOS notation it appears before the turnstile.
A declaration computes an environment, and can be made local
to a computation X using the scope funcon. The following I-

MSOS rules define its dynamic semantics.
envph X — X'

env(pi/p) X — X' (79)

env p I scope(p1, X) — scope(pi, X')

envp - scope(p1,V) -V (80)

Rule (80) applies only when V is a value, which is always indepen-
dent of the current bindings. The lifted scope funcon, which takes
a declaration (computing an environment) as its first argument, is
defined by an implicit patience rule determined by the signature.
The following I-MSOS rule defines the static semantics of the
lifted scope funcon. Notice that the type of a declaration D is a

typing context I';.
envl'- X :T

env'FD:T'y env(lhW/IFX: T 1)

envI'F scope(D,X): T

3.4.2 Abstractions

An abstraction abs(X) is a value constructed from a computa-
tion X that may depend on a given argument value. Abstractions
have types abs(T1,T»), where T is the type of the argument
and 7% is the type of the computation when given that type of argu-

ment.
givenT - X : T’

givenTh - X : Tb 82)

given _ I abs(X) : abs(T1,T>)

The funcon apply takes an abstraction abs(X) and an argument
value V/, and supplies V to X.
X — X’
apply(abs(X), V) — supply(V, X) (83)
(The funcon supply was introduced in Sect.[2]) The apply funcon
is lifted in both arguments. Its typing rule is standard:

E1 : abs(Tg,T) E2 : T2 (84)

apply(E1, E2) : T

The unary abstraction constructor abs(X) allows X to depend
on a single given argument value. The binary abstraction funcon
abs(P, X) takes also a pattern P, which is matched against the
given value to compute an environment. This allows nested abstrac-
tions to refer to arguments at different levels, using the identifiers
bound by the respective patterns.



The following rule defines the dynamic semantics of the binary

abs funcon.
abs(P, X) — abs(scope(match(given, P), X)) (85)

Here match is a pattern-matching funcon, defined in Sect.
Patterns are themselves abstractions, and have types of the form
abs(T,T") where T is a typing context. The static semantics of

binary abs is as follows.
envl'-E:T

envl' - P: abs(Ti,T'1) env(Ih/I)F X : Ty (86)
envI'F abs(P, X) : abs(T1,T>)

We will omit the typing rules in the rest of this section, for brevity.

3.4.3 Static Scoping

When an abstraction abs(X) is applied, evaluation of bound-
value(7) in X gives the value currently bound to I, which corre-
sponds to dynamic scopes for non-local bindings. To specify static
scoping, we use the close funcon, which takes an abstraction and
returns a closure formed from it and the current environment.

env p I close(abs(X)) — abs(closure(X, p)) (87)

The funcon closure can be used to set the current environment for

any computation X:
envpkF X — X’

envpk X — X' (88)

env_F closure(X, p) — closure(X’, p)

env _ I closure(V, p) = V (89)

3.4.4 Basic Patterns

Matching the value of an expression E to a pattern P computes an
environment. It corresponds to the application of P to E:

match(E, P) — apply(P, E) (90)

Patterns may be constructed in various ways. For example, the
pattern bind () matches any value and binds the identifier 7 to it:

bind(I) — abs(bind(, given)) o1

The wildcard pattern any also matches any value, but computes the
empty environment (J:

any — abs(0) (92)

Other patterns do not match all values. An extreme example is the
pattern only(V'), matching just the single value V:

only(V) — abs(when-true(equal(given, V), ())) (93)

3.4.5 Failure and Back-Tracking

The funcon when-true(FE, X) guards a computation X with a
Boolean-valued condition E. When the value of E is false, the
funcon emits the signal ‘failed true’ while its computation makes
a transition to the funcon stuck (which has no further transitions).

The signal ‘failed false’ indicates that the computation is proceed-
ing normally, and is treated as unobservable.

X failure B X/

when-true(true, X) failure false, - (94)
when-true(false, X) faluretrue, stuck (95)

The funcon else allows recovery from failure.

failure false

X —=X

failure false (96)
else(X,Y) else(X")Y)

X failure true X/
failure fal
else(X, Y) ailure false Y

o7

failure false

else(V,Y) 1% (98)

3.4.6 Compound Patterns

The funcon else is used in the definition of the operation prefer-
over on abstractions and (as a special case) on patterns:

prefer-over(abs(X),abs(Y)) — abs(else(X,Y")) (99)

For patterns, prefer-over corresponds to ordered alternatives, as
found in Caml Light.

Another way to combine two patterns, also found in Caml Light,
is conjunctively, requiring them both to match, and uniting their
bindings. This corresponds to the funcon patt-union:

patt-union(abs(X),abs(Y)) —
abs(map-union(X,Y)) (100)

Here, the data operation map-union is lifted to computations.

3.4.7 Exceptions

We specify exception throwing and handling in a modular way
using the emitted signals ‘exception some(V')’ and ‘exception
none’ (the latter is unobservable).

exception V'
Ry

X X'

exception some (V')
—>

throw(V) stuck (101)

If the first argument of the funcon catch signals an exception
some(V), it applies its second argument (an abstraction) to V.

g eceptionV,
¢ Sxceptionnone,
catch(X,Y) exception none catch(X",Y) e
¢ Sxceptionsome(V) () 103)
catch(X, ) SEEonmone o (Vo)
catch(V, y) Zptionnone (104)

The following funcon corresponds to a useful variant of catch:
exceptions are propagated when the application of the abstraction

to them fails.

catch-else-rethrow(E, A) — (105)
catch(E, prefer-over( A, abs(throw(given))))



For funcons whose I-MSOS rules do not mention the exception
entity, exceptions are implicitly propagated to the closest enclosing
funcon that can handle them. When the translation of a program to
funcons involves throw, it needs to be enclosed in catch, to ensure
that (otherwise-)unhandled exceptions cause abrupt termination.
This concludes the presentation of our Caml Light case study.

4. Related Work

Heering and Klint proposed in the early 1980s to structure complete
definitions of programming languages as libraries of reusable com-
ponents [12]. This motivated the development of ASF+SDF [3]],
which provides strong support for modular structure in algebraic
specifications. However, an ASF+SDF definition of a programming
language does not, in general, permit the reuse of the individual lan-
guage constructs in the definitions of other languages. As discussed
in [33]], the main hindrances to reuse in ASF+SDF are coarse mod-
ular structure (e.g., specifying all expression constructs in a single
module), explicit propagation of auxiliary entities, and direct spec-
ification of language constructs.

At the end of the 1980s, Moggi [25] introduced the use of mon-
ads and monad transformers in denotational semantics. (In fact
Scott and Strachey had themselves used monadic notation for com-
position of store transformations in the early 1970s, and an example
of a monad transformer can also be found in the VDM definition
of PL/I, but the monadic structure was not explicit [32]].) Monads
avoid explicit propagation of auxiliary entities, and monad trans-
formers are highly reusable components. Various monad transform-
ers have been defined (e.g., see [20]) with operations that in many
cases correspond to our funcons; monads also make a clear distinc-
tion between values and computations. One drawback of monad
transformers is that different orders of composition can lead to dif-
ferent semantics; in contrast, our funcons are independent of the
order in which they are added. The concept of monad transformers
inspired the development of MSOS, our modular variant of SOS.

An alternative way of defining monads has been developed by
Plotkin and Power [40] using Lawvere theories instead of monad
transformers. Recently, Delaware et al. [8] presented modular
monadic meta-theory, combining modular datatypes with monad
transformers, focusing on modularisation of theorems and proofs.

Kutter and Pierantonio [17] proposed the Montages variant of
abstract state machines (ASMs) with a separate module for each
language construct. Reusability was limited partly by the tight cou-
pling of components to concrete syntax. Borger and others [4) 5]
gave modular ASM semantics for JAVA and C#, identifying fea-
tures shared by the two languages, but did not define components
intended for wider reuse.

Doh and Mosses [9] first proposed replacing the conventional
modular structure of specifications in action semantics [26} |27]] by
a component-based structure, defining the abstract syntax and ac-
tion semantics of each language construct in a separate module.
Iversen and Mosses [14] introduced so-called Basic Abstract Syn-
tax (BAS), which is a direct precursor of our current collection of
funcons. They specified a translation from the Core of Standard
ML to BAS, and gave action semantics for each BAS construct,
with tool support using ASF+SDF [6]. The action notation used in
action semantics can itself be regarded as a primitive collection of
funcons; having to deal with both BAS and action notation was a
drawback. Mosses and others [15} [29H3 1] have reported on subse-
quent work that led to the present paper.

Levin and Pierce developed the TinkerType system [19] to sup-
port reuse of conventional SOS specifications of individual lan-
guage constructs. The idea was to have a variant of the specifica-
tion of each construct for each combination of language features.
To define a new language with reuse of a collection of previously
specified constructs, TinkerType could determine the union of the

auxiliary entities needed for their individual specifications, and as-
semble the language definition from the corresponding variants.
This approach alleviated some of the symptoms of poor reusability
in SOS.

Another system supporting practical use of conventional SOS is
Ott [41]], which was used by Owens [36] to specify a sublanguage
of OCaml corresponding closely to Caml Light. A type soundness
theorem was proved, based on HOL code generated by Ott from
the language specification. Ott facilitates use of SOS, but any reuse
of previous specifications requires manual copying, pasting and
editing, which is not evident in the resulting specification.

Ott supports also reduction semantics based on evaluation con-
texts. This framework is widely used for proving meta-theoretic
results (e.g., type soundness). The PLT-Redex tool [16]] runs pro-
grams by interpreting their reduction semantics, and has been used
to validate language specifications. However, evaluation context
grammars appear to be inherently non-modular, which seems to
preclude use of reduction semantics to define reusable components.

Competing approaches with a high degree of inherent modular-
ity include Rewriting Logic Semantics [23] and the K Framework
[21]. The lifting of funcon arguments from value sorts to computa-
tion sorts is closely related to strictness annotations in K. It appears
possible to specify individual funcons independently in K, and to
use the K Tools to translate programming languages to funcons
[35]], thereby incorporating our component-based approach directly
in that framework.

Haeri and Schupp [10] are developing a novel framework that
focuses on reusable components of language implementations. It
will be interesting to see how well it scales up to larger languages.

5. Conclusions and Further Work

We regard our Caml Light case study as significant evidence of the
applicability and modularity of our component-based approach to
semantics. The key novel feature is the introduction of an open-
ended collection of fundamental constructs (funcons). The abstrac-
tion level of the funcons we have used to specify the semantics
of Caml Light appears to be optimal: if the funcons were closer
to the language constructs, the translation of the language to fun-
cons would have been a bit simpler, but the -MSOS rules for the
funcons would have been considerably more complicated; lower-
level funcons (e.g., comparable to the combinators used in action
semantics [26 27]]) would have increased the size and decreased
the perspicuity of the funcon terms used in the translation.

Caml Light is a real language, and we have successfully tested
our semantics for it by generating funcon terms from programs,
running them using Prolog code generated from the I-MSOS rules
that define the funcons, then comparing the results with those given
by running the same programs on the latest release of the Caml
Light system (which is the de facto definition of the language). The
test programs and funcon terms are available onlineﬂ together with
the generated Prolog code for each funcon. At the time of writing,
we have not yet checked whether our test programs exercise every
translation equation, nor whether running them uses every rule
of every funcon. Nevertheless, we are reasonably confident in the
accuracy of our specifications.

The work reported here is part of the PLANCOMPS project [38].
Apart from developing and refining the component-based approach
to language specification, PLANCOMPS is developing a chain of
tools specially engineered to support its practical use.

Ongoing and future case studies carried out by the PLAN-
CoOMPS project will test the reusability of our funcons. We are
already reusing many of those introduced for specifying Caml
Light in a component-based semantics for C#. The main test will

Hww . plancomps.org/churchill2014
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be to specify the corresponding JAVA constructs using essentially
the same collection of funcons as for C#. The project is also aim-
ing to test whether the approach is equally applicable to domain-
specific languages, where the benefits of reuse in connection with
co-evolution of languages and their specifications could be espe-
cially significant.

We are quite happy with the perspicuity of our specifications.
Lifting value arguments to computation sorts has eliminated the
need to specify tedious ‘patience’ rules in the small-step I-MSOS
of funcons. The funcon names are reasonably suggestive, while not
being too verbose, although there is surely room for improvement.
When the PLANCOMPS project has completed its case studies, it
intends to finalise the definitions of the funcons it has developed,
and establish an open-access digital library of funcons and lan-
guage specifications. Until then, the names and details of the fun-
cons presented here should be regarded as tentative.

In conclusion, we consider our component-based approach to
be a good example of modularity in the context of programming
language semantics. We do not claim that any of the techniques we
employ are directly applicable in software engineering, although
component-based specifications might well provide a suitable basis
for generating implementations of domain-specific languages.
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