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Why coinduction in operational semantics?

Many interesting languages involve diverging computations

Coinduction provides a tool for reasoning about both
converging and diverging computations

Traditional approach to divergence in big-step semantics
introduces rules with duplication

In this talk: Expressing divergence in big-step semantics using a
single set of rules without duplication
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Divergence in small-step semantics

e→ e′

I Inductive interpretation ( ∗→)

e→ e′ e′ ∗→ e′′

e ∗→ e′′ e ∗→ e
e1 → e2 → · · · → en

I Coinductive interpretation (∞→)

e→ e′ e′ ∞→
e ∞→

e→ e0 → · · · → en → · · ·
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Big-step semantics for λ-calculus

Terms 3 a, b, v ::= c | λx.a | x | a b

c⇒ cConst
λx.a⇒ λx.a

Fun

a1 ⇒ λx.b a2 ⇒ v2 b[x← v2]⇒ v
a1 a2 ⇒ v App

Inductive interpretation (⇒): the set of pairs (a, v), such that
a⇒ v is the conclusion of a finite derivation tree
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Divergence in λ-calculus

· · ·

a1
∞⇒

a1 a2
∞⇒

App-l
a1 ⇒ λx.b a2

∞⇒
a1 a2

∞⇒
App-r

a1 ⇒ λx.b a2 ⇒ v2 b[x← v2]
∞⇒

a1 a2
∞⇒

App-f

Coinductive interpretation (∞⇒): the set of terms a, such that
a ∞⇒ is the conclusion of an infinite derivation tree
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ω = ∆ ∆ where ∆ = (λx.x x)

Inductive relation:
ω 6⇒ v for any v

Coinductive relation:

∆⇒ ∆
Lam

∆⇒ ∆
Lam x x[x← ∆]

∞⇒
∆ ∆

∞⇒
App-f
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Problem: Duplication

Big-step semantics:
I 3 rules
I 3 premises
I 0 duplicate premises

Big-step semantics with divergence:
I 6 rules
I 9 premises
I 3 duplicate premises

It would be good to avoid those extra rules
– especially when scaling up to larger languages!
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Leroy and Grall’s coinductive big-step semantics

c co⇒ c
Const

λx.a co⇒ λx.a
Fun

a1
co⇒ λx.b a2

co⇒ v2 b[x← v2]
co⇒ v

a1 a2
co⇒ v

App

Coinductive interpretation (⇒): the set of pairs (a, v), such that
a co⇒ v is the conclusion of a finite or infinite derivation tree

8/16



ω = ∆ ∆ where ∆ = (λx.x x)

∆
co⇒ ∆

Lam
∆

co⇒ ∆
Lam x x[x← ∆]

co⇒ v

∆ ∆
co⇒ v

App
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Problem: Diverging terms that do not co-evaluate

ω
∞⇒

ω (0 0)
∞⇒

App-l but
ω

co⇒ λx.b (0 0) 6 co⇒ v2 b[x← v2]
co⇒ v

ω (0 0) 6 co⇒ v
App

There are also terms which do not contain stuck sub-terms, but
still do not co-evaluate [Leroy and Grall, 2009].
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Divergence as state

Terms 3 a, b, v ::= c | λx.a | x | a b

Div 3 δ ::= � | �

a

/δ

⇒ v

/δ

c

/�

⇒ c

/�

δ-Const
λx.a

/�

⇒ λx.a

/�

δ-Fun

a1

/�

⇒ λx.b

/δ

a2

/δ

⇒ v2

/δ′

b[x← v2]

/δ′

⇒ v

/δ′′

a1 a2

/�

⇒ v

/δ′′

δ-App

a/� ⇒ b/�
Div
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ω = ∆ ∆ where ∆ = (λx.x x)

Inductive interpretation:

ω/� 6⇒ v/δ for any v, δ

Coinductive interpretation: for any v,

∆/�
co⇒ ∆/�

δ-Lam
∆/�

co⇒ ∆/�

δ-Lam
∆ ∆/�

co⇒ v/�

∆ ∆/�
co⇒ v/�

δ-App
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Divergence as state covers all diverging terms!

In contrast to Leroy and Grall’s coinductive big-step semantics:

for all e, e/�
co⇒ v/� iff e ∞⇒

Divergence as state:
Automatic rule transformation

allowing us to reason about divergence
while avoiding the duplication problem
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Problem: Noise in the coinductive interpretation

Convergence and divergence are coinductively indistinguishable

∆/�
co⇒ ∆/�

δ-Lam
∆/�

co⇒ ∆/�

δ-Lam
∆ ∆/�

co⇒ v/�

∆ ∆/�
co⇒ v/�

δ-App
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Noise cancellation

e/�
co⇒ e′/�

e ⊥
e/� ⇒ v/�

e v

For constructive alternative, see Nakata and Uustalu’s work on
trace-based coinductive semantics
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Summary

Pros:
I Single set of rules, avoids the duplication problem
I More expressive than Leroy and Grall’s coinductive big-step

semantics

Cons:
I Convergence and divergence are coinductively

indistinguishable
I Slightly less expressive than traditional divergence

predicates ∞⇒
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