Imperative Polymorphism by
Store-Based Types as Abstract Interpretations

Casper Bach Poulsen, Peter D. Mosses, Paolo Torrini

Department of Computer Science
Swansea University
Swansea, UK

{cscbp,p.d.mosses,p.torrini}@swansea.ac.uk

13 January 2015
PEPM, Mumbai, India

Type safety

“Well-typed programs can’t go wrong”
—Robin Milner

2/20

Type safety

“Well-typed programs can’t go wrong”
—Robin Milner

Million-rupee question

How do we construct a type system?

2/20

POPL’97

Types as Abstract Interpretations

(invited paper)

Patrick Cousot
LIENS, Ecole Normale Supérieure
45, rue d’Ulm
75230 Paris cedex 05 (France)

ens. fr, http://wwv.ens.tr/

Abstract

Starting from a denotational semantics of the eager untyped
lambda-calculus with explicit runtime errors, the standard
collecting semantics is defined as specifying the strongest
program properties. By a first abstraction, a new sound
type collecting semantics is derived in compositional fix-
point form. Then by successive (semi-dual) Galois con-
nection based abstractions, type systems and/or type in-
ference algorithms are designed as abstract semantics or
abstract interpreters approximating the type collecting se-
mantics. This leads to a hierarchy of type systems, which
is part of the lattice of abstract interpretations of the un-
typed lambda-calculus. This hierarchy includes two new a la
Church/Curry polytype systems. Abstractions of this poly-

type semantics lead to classical Milner/Mycroft and Damas/-

Milner polymorphic h Church/Curry
and Hindley principal typing algorithm. This shows that
types are abstract interpretations.

1 Introduction

The leading idea of abstract interpretation [6, 7, 9, 12] is

that program semantics, proof and static analysis methods

have common structures which can be exhibited by abstrac-

tion of the structure of run-time computations. This leads

to an organization of the more or less approximate or refined
g

checking algorithms can then be developed as a separate con-
cern, and their correctness can be verified with respect to a
given type system; this process guarantees that type checkers
satisfy the language definition.” [2]. Abstract interpreta-
tion allows viewing all these different aspects m the more
unifying of semantic i

tion of program analysis and type systems within the same
abstract mberpretnnon framework should lead to a better

of the i ip between these i

different approaches to program correctness and optimiza-
tion.

2 Syntax
The syntax of the untyped eager lambda calculus is:
£,...€X : program variables
e€E : program expressions
eu=x|Ax-e|ei(er) | pf-Ax-e|
1ler—ez2|(e1?erzes)

Ax-e is the lambda and e;(ez) the
In pf - Ax-e, the function £ with formal parameter x is de-
fined recursively. (e1 ? 2 : e3) is the test for zero.

3 Denotational Semantics

Imperative Polymorphism by
Store-Based Types as Abstract Interpretations

The vision:

big-step SOS for Ayes

abstraction

store-based polymorphic type system

4/20

Imperative Polymorphism by
Store-Based Types as Abstract Interpretations

In the paper:

big-step SOS for A

abstraction

polymorphic type system

... and a store-based polymorphic type system

4/20

Imperative Polymorphism by
Store-Based Types as Abstract Interpretations

In the paper:

big-step SOS for A

abstraction

polymorphic type system

... and a store-based polymorphic type system

4/20

The problem with divergence in big-step SOS

x € Var i€ peVarﬁ—n>Val
Expr>e:=Xxel|ee|x]|i Val 5 v == (x,e,p) | i

px) =v
pbEXxe= (xe,p) pFx=v pki=i

pber=(xe,p)) prex=vy px—wv]ke=v
pFeles=v

5/20

A solution for divergence in big-step SOS

x € Var i€ pGVarﬁ—n>Val
Expr>e:=Xxel|ee|x]|i Val 5 v = (x,e,p) | i
Divsdu=1|1

(Div) p + €/s = Vst

[)FG/T:>V/T

px) =v
pHXxe, = (xep, pbx =v, pki, =1,

phey = (xep)s pheys=vys phxvalbes=v

p'_ el 62/_ :>V/(;//

5/20

A solution for divergence in big-step SOS

x € Var i€ pGVarﬁ—n>Val
Expr>e:=Xxel|ee|x]|i Val 5 v == (x,e,p) | i

Coinductive interpretation

The coinductive interpretation of = contains all computations
expressible in the untyped \-calculus.

px) =v
pHXxe, = (xep, pbx =v, pki, =1,

phey = (xep)s pheys=vys phxvalbes=v

p'_ el 62/_ :>V/(;//

5/20

Semantic function

S[e] € S £ Env — p(Val x Div)

Slel = Ap{(v,8) | pFe; = v/s5}

6/20

Semantic function

S[e] € S £ Env — p(Val x Div)

Slel = Ap{(v,8) | pFe; = v/s5}

For example:

S[(Axe.)] = Ap-{ (e, x, p), 1)}

6/20

Semantic function

S[e] € S £ Env — p(Val x Div)

Slel = Ap{(v,8) | pFe; = v/s5}

For example:

S[(Axe. x)] = Ap{ (e, x, p), 1)}
ST(Ax. xx) (M. xx)] = Ap{(v,d) | v € Val, § € Div}

6/20

Overview

v'big-step SOS for A

abstraction

polymorphic type system

Type safety

“Well-typed programs can’t go wrong”

8/20

Type safety

“Well-typed programs always go right”

8/20

Type safety

“Well-typed programs always go right”

I'kFe:7

8/20

Type safety

“Well-typed programs always go right”

l'kFe:1 = p: T =
v, 6. phe =vis AT Ev:T

8/20

Abstraction

1. Define abstract domain
2. Type safety as abstraction function and Galois connection
3. Construct typing relation

9/20

1. Base-type domain definition

S £ Env — p(Val x Div)

Concrete values:

Val >v = (x,e,p)|i peEnv2Var ™ val

10/20

1. Base-type domain definition

S £ Env — p(Val x Div) B £ o(BEnv x BType)

Concrete values:
Val >v = (x,e,p)|i peEnv2Var ™ val

Base-types:

BType 5 b == (x,e,p") | int " € BEnv 2 Var % BType

10/20

1. Base-type domain definition

S £ Env — p(Val x Div) B £ o(BEnv x BType)
of € p(S) = B property abstraction
ozlv’ € Val — BType value abstraction
042 € Env — BEny environment abstraction
leS—B semantic function abstraction

10/20

2. Base-type safety as Galois connection

C = p(S) B £ o(BEnv x BType)

11/20

2. Base-type safety as Galois connection

C = p(S) B £ o(BEnv x BType)

(C,C) &= (B, D)

See paper for details

11/20

3. Constructing typing function B[e]

Define:
Ble] £ {(p°,b) | p* e ="b}

12/20

3. Constructing typing function B[e]

Define:
Ble] £ {(p°,b) | p* e ="b}

Type safety as guiding principle:

Ble] C ag(S[e])

12/20

3. Constructing typing function B[e]

Define:
Ble] £ {(p°,b) | p* e ="b}

Type safety as guiding principle:
Ble] C of(S[e])
Define a?:

ay(S) £ {(s",b) | Vp. p* = ab(p) =
W.b=al(W)A W, 1) eS(p)}

12/20

3. Constructing typing function B[e]

Define:

Unfolding the guiding principle

Pre=th = pb:ai’,(p):>

. pke=v, A) =b

Deriving the structure of =P:
rule induction on typing relation, using knowledge of = and a?.

W.b=al(W)A W, 1) eS(p)}

12/20

Overview

v'big-step SOS for A

v abstraction

polymorphic type system

13/20

Polymorphic type system

B 2 o(BEnv x BType) P £ o(PEnv x MType)

Base-types:
BType 3 b == (x,e,p?) | int p° € BEnv £ Var fin, BType
Monotypes with polytype environments:

MType > m :=m — m | int P € PEnv £ Var fin, ©(MType)

14/20

Polymorphic type system

B 2 o(BEnv x BType) P £ o(PEnv x MType)

Base-types:
BType 3 b == (x,e,p?) | int p° € BEnv £ Var fin, BType
Monotypes with polytype environments:

MType > m :=m — m | int P € PEnv £ Var fin, ©(MType)

See paper for details

14/20

Overview

v'big-step SOS for A

v abstraction

v'polymorphic type system

15/20

Overview

v'big-step SOS for A

A preliminary store-based type system and some implications for

imperative polymorphism.

!

v'polymorphic type system

15/20

Imperative let-polymorphism for A,

Imperative polymorphism?

» polymorphic type inference in the presence of imperative
features (e.g., references)

16/20

Imperative let-polymorphism for A,

Imperative polymorphism?

» polymorphic type inference in the presence of imperative

features (e.g., references)

Expr>e:=Xxel|ee|x]|i

Val 5 v = (x,e,p) | i

16/20

p|—€/5 = V5

Imperative let-polymorphism for A ¢

Imperative polymorphism?

» polymorphic type inference in the presence of imperative

features (e.g., references)

pl—e/(;‘,f :>V/5/‘U/

Exproe:=Xxe|ee|x|i|ref e|le|e :=e

| let x = e in e|eje

Val 5 v = (x,e,p) | i |

o € Loc ﬁ—n> Val

16/20

An example — value restriction

An error-free program:

let mkref = (Ax.ref Xx)
in mkref 1; mkref true

» mkref = (Axref x):Va.a — («ref)

17/20

An example — value restriction

An error-free program:

let mkref = (Ax.ref Xx)
in mkref 1; mkref true

» mkref = (Ax.ref x):Va.a — («ref)
» (mkref1): int ref

17/20

An example — value restriction

An error-free program:
let mkref = (Ax.ref Xx)

in mkref 1; mkref true

» mkref = (Ax.ref x):Va.a — («ref)
» (mkref1): int ref
» (mkref true) : bool ref

17/20

An example — value restriction

An error-free program:

let mkref = (\y.y)(\x. ref x)
in mkref 1; mkref true

» mkref = (Ay.y) (M. ref x): o — (aref)

17/20

An example — value restriction

An error-free program:

let mkref = (\y.y) (M\x. ref x)
in mkref 1; mkref true

» mkref = (Ay.y)(Ax. ref x): int — (int ref)
» (mkref1): int ref

17/20

An example — value restriction

An error-free program:
let mkref = (\y.y) (M\x. ref x)

in mkref 1; mkref true

» mkref = (Ay.y)(Ax. ref x): int — (int ref)
» (mkref1): int ref
» (mkref true) : inhibited by value restriction ®

17/20

Let-polymorphism for A

MType > m ::=m — m | int

P € PEnv 2 Var ™ o(MType)

18/20

Store-based let-polymorphism for \,.¢

ke =M,

MType: 5 M =:= (M.¢) — (M.<) | int | [
I” € PEnv 2 Var % o(MType°)

¢ €Loc fin, MType®

18/20

Store-based let-polymorphism for \,.¢

Store-based function types

FP[X — {Mz}] = e/go =>S Ml/§A
TP E e =5 (M, <0) = (M1,50) /¢

IPEep) =5 (Mg, 50) = (M1,6a) /¢
P+ € /¢! =5 M2/<N G = "

P S
I+ el ez/g = M1/§//®§A

18/20

Store-based let-polymorphism for \,.¢

Store-based function types

FP[X — {Mz}] = e/go =>S Ml/§A
TP E e =5 (M, <0) = (M1,50) /¢

TP F ey =5 (Ma,c0) = (M1,) /¢
FP [ez/gl :>S M2/<// 0] j C”

P S
I'" - e1 ea) = My

18/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

» mkref = (\y.y) (Mx. ref x),. :

19/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

» mkref = (\y.y) (Mx. ref x),. :
> ()i {ay) = ().

19/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

» mkref = (\y.y) (Mx. ref x),. :

> (W-y)y{as) = {ay),.
> (Ax. ref x),.:

19/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

> mkref = (. y) (. ref X),. : (VE.¥B. (8,) (£, (¢ B)).
e W) (B = (05 B)) = (B (6 (6 B)).),
/

> (Ax.ref x),.: (B,) = (L, (€= B)),.

19/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

» mkref = (\y.y) (M. ref x),. 2 (VLVB.(B,) = ((, (0 5))),.
> (mkref1),.:

19/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

> mkref = (Ay.y) (. ref x),. 1 (VLVB. (B,)= (L, (L~ B))),.
> (mkref 1), : l/1,»int)

19/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

> mkref = (Xy.y) (M. ref x),. 1 (VEVB.(B,-) = ((, (6= 1)),
> (mkref1),. 2 L1y~ int)
> (mkref true);q, »int) :

19/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

> mkref = (Ay.y) (. ref x),. 1 (VLVB. (B,)= (L, (L~ B))),.
> (mkref1),. 2 L1y~ int)

> (mkref true) i, sint) * Lo/l —intil—bool)

19/20

An example — store-based types

let mkref = (\y.y)(Ax.ref x)
in mkref 1; mkref true

> mkref = (Ay.y) (. ref x),. 1 (VLVB. (B,)= (L, (L~ B))),.
> (mkref1),. 2 L1y~ int)

> (mkref true) 1, »int) © 2/t intilasbool)

Passes type checking ©

19/20

Conclusions and future work

Divergence in big-step SOS:

» concise semantics amenable to abstract interpretation

20/20

Conclusions and future work

Divergence in big-step SOS:
» concise semantics amenable to abstract interpretation
Abstraction as guiding principle:

» viable for constructing safe type systems

20/20

Conclusions and future work

Divergence in big-step SOS:

» concise semantics amenable to abstract interpretation
Abstraction as guiding principle:

» viable for constructing safe type systems

» ongoing work: Coq encoding and proofs

20/20

Conclusions and future work

Divergence in big-step SOS:

» concise semantics amenable to abstract interpretation
Abstraction as guiding principle:

» viable for constructing safe type systems

» ongoing work: Coq encoding and proofs
Store-based types:

» derivation remains to be rigorously checked

20/20

