
Divergence as State in Coinductive Big-Step Semantics

Casper Bach Poulsen and Peter D. Mosses

Swansea University, Swansea, UK
{cscbp,p.d.mosses}@swansea.ac.uk

Abstract

The coinductive interpretation of a big-step relation for a call-by-value functional language is insuffi-

cient for expressing all divergent computations. A commonly adopted alternative is to use a divergence

predicate that suffers from a serious duplication problem. We consider divergence as state in coinductive

big-step semantics, and show that this avoids the duplication problem. Big-step rules with divergence

as state are slightly less expressive than using a divergence predicate or pretty-big-step rules, but are

more concise than both.

1 Introduction and Background

Big-step semantics (also called natural semantics [5]) relates programs to their final results of
evaluation. The standard inductive interpretation of a big-step semantics only describes the
behaviour of terminating programs. In contrast, small-step rules relate intermediate configu-
rations, allowing non-terminating behaviour to be described as infinite sequences of reduction
steps. Leroy and Grall [6] observed that the coinductive interpretation of big-step rules can
express some but not all diverging computations. To express diverging computations on a par
with small-step semantics, Leroy and Grall used a separate divergence predicate

∞⇒.
Instead of a separate divergence predicate, we consider a simple extension of big-step rules

that augments rules to propagate a divergence state, such that once a computation enters a
divergent state, all subsequent computations are also in a divergent state. A straightforward
modification of Leroy and Grall’s Coq proofs shows that this suffices to express diverging
computations comparable to small-step semantics.1 This allows one to use a single relation
for all proofs, which should minimise the proof-burden of working with a big-step semantics.

We consider the same language as Leroy and Grall [6]: call-by-value λ-calculus extended
with constants. Its syntax is:

Constants 3 c ::= 0 | 1 | . . . Variables 3 x, y, z Terms 3 a, b, v ::= x | c | λx.a | ab

where c and λx.a are values. The call-by-value big-step semantics is inductively given by:

c⇒ c Const
λx.a⇒ λx.a

Fun
a1 ⇒ λx.b a2 ⇒ v2 b[x← v2]⇒ v

a1a2 ⇒ v App

Here, b[x ← v2] denotes the capture-avoiding substitution of v2 for all free occurrences of x in
b. These rules capture only terminating computations. For example, for ω = (λx.xx)(λx.xx),
there is no a such that ω ⇒ a. Following Cousot and Cousot [3], Leroy and Grall define
divergence by the coinductive interpretation of the rules:

a1
∞⇒

a1a2
∞⇒

App-l
a1 ⇒ v a2

∞⇒
a1a2

∞⇒
App-r

a1 ⇒ λx.b a2 ⇒ v2 b[x← v2]
∞⇒

a1a2
∞⇒

App-f

1The modified Coq code is at: http://cs.swansea.ac.uk/~cscbp/nwpt14-coq.zip

1

http://cs.swansea.ac.uk/~cscbp/nwpt14-coq.zip

Divergence as State in Coinductive Big-Step Semantics C. Bach Poulsen and P. D. Mosses

Let
co⇒ denote the relation given by the coinductive interpretation of Const, Fun, and App. If

a
co⇒ v, then either a ⇒ v or a

∞⇒, but the converse does not hold, as shown by the counter-
example ω(0 0): the coinductive interpretation of App requires that (0 0) coevaluates to a
value, which is not the case.

2 Divergence as State

Following our previous work [1] that shows how to avoid propagation of exceptions by encoding
them in a stateful manner, which in turn is analogous to Charguéraud’s abort rules [2], we
introduce a ‘divergence flag’, ranged over by δ ::= � | �. Here, � denotes convergence and �
divergence. Consider the following rules:

c/�
d⇒ c/�

δ-Const

λx.a/�
d⇒ λx.a/�

δ-Fun

a/�
d⇒ b/�

δ-Div

a1/�
d⇒ λx.b/δ a2/δ

d⇒ v2/δ′ b[x← v2]/δ′
d⇒ v/δ′′

a1a2/�
d⇒ v/δ′′

δ-App

Each rule except δ-Div can be automatically derived from Const, Fun, and App by letting
the conclusion source be in a � state, and threading the δ flag through the premises to the
conclusion target in the order of evaluation (in this case, left-to-right, as illustrated by the rule
δ-App). The intuition behind the δ-Div rule is that, if we are diverging, no value is produced,
so we may choose to any term b as result. Under an inductive interpretation of these rules, a
computation starting in a convergent state never results in divergence:

Theorem 1. a/�
d⇒ v/� iff a⇒ v.

Let
dco⇒ be the coinductive counterpart to

d⇒.
dco⇒ is expressive enough that we can prove

for any v that ω(0 0)/�
dco⇒ v/�. However, while 0 ω

∞⇒ is provable, there is no v such that

0 ω/�
dco⇒ v/�. The rule App-r allows the left-hand side of an application to be an arbitrary

value when the right-hand side of the application diverges.
∞⇒ reflects the behaviour specified

by the following small-step rules, given by Leroy and Grall [6]:

v ∈ Values
(λx.a)v → a[x← v]

β
a1 → a2
a1b→ a2b

app-l
a ∈ Values b1 → b2

ab1 → ab2
app-r

In contrast to App-r and app-r, δ-App requires that the left-hand side of an application evaluates
to a function. One solution is to use Charguéraud’s pretty-big-step [2] style. Another is to modify
∞⇒ to insist that the converging left-hand terms always give a function, thereby disallowing terms
such as 0 ω. Opting for this restriction, we replace app-r and App-r by:

b1 → b2
(λx.a)b1 → (λx.a)b2

app-r′
a1 ⇒ λx.a a2

∞⇒
a1a2

∞⇒
App-r′

Let →′ and
∞⇒

′
be the results of this replacement. Using the law of excluded middle:

Theorem 2. For any b, a
∞⇒

′
iff a/�

dco⇒ b/�.

2

Divergence as State in Coinductive Big-Step Semantics C. Bach Poulsen and P. D. Mosses

This shows that divergence as state suffices to use a standard big-step relation to express
divergent computations. The straightforward extension does not introduce new rules nor require
existing rules to be factored into multiple rules. Whereas Leroy and Grall use 6 rules with 9
premises (3 of which are duplicates), divergence as state uses 4 rules with 3 premises. The
corresponding pretty-big-step rules use 6 rules with 5 premises.2

To test the applicability of divergence as state, we proved type soundness of the simply-

typed typing rules of Leroy and Grall [6] relative to
dco⇒. Letting ∅ ` a : T denote that a has

type T in the empty context, we proved the following:

Theorem 3. If ∅ ` a : T then there exist v and δ such that a/�
dco⇒ v/δ.

We leave to future work simplifying Leroy and Grall’s proof structure, which uses big-step
progress and preservation lemmas [6, Lemma 48 and 50], and uses the law of excluded middle.

We conjecture that a constructive and simpler proof exists that exploits that
dco⇒ subsumes both

converging and diverging computations. Sources of inspiration for constructing such proofs
include Nakata and Uustalu’s work [7] on reasoning about execution traces and divergence
constructively, and Hur et al.’s work [4] on parameterised coinduction.

3 Concluding Remarks

Theorem 2 shows that straightforwardly extending a big-step semantics by divergence as state
suffices to prove properties about divergence. Big-step rules with divergence as state are slightly
less expressive than using a divergence predicate or pretty-big-step rules, but are more concise
than both. Based on these observations, we propose divergence as state as an attractive and
original alternative to expressing divergence in big-step semantics.

We expect that it is possible to extend our approach to include traces in the divergence
flag to obtain big-step rules similar to (but more concise than) Charguéraud’s pretty-big-step
rules with traces [2]. We also expect that it is possible to further augment such extended
rules to obtain a semantics similar to Nakata and Uustalu’s trace-based coinductive operational
semantics [7]. Deciding whether these expectations hold is left to future work.

References

[1] C. Bach Poulsen & P.D. Mosses (2014): Deriving Pretty-Big-Step Semantics from Small-Step Se-
mantics. In: ESOP’14, LNCS 8410, Springer, pp. 270–289.

[2] A. Charguéraud (2013): Pretty-Big-Step Semantics. In: ESOP’13, LNCS 7792, Springer, pp. 41–60.

[3] P. Cousot & R. Cousot (1992): Inductive Definitions, Semantics and Abstract Interpretations. In:
POPL’92, ACM, pp. 83–94.

[4] C. Hur, G. Neis, D. Dreyer & V. Vafeiadis (2013): The Power of Parameterization in Coinductive
Proof. In: POPL’13, ACM, pp. 193–206.

[5] G. Kahn (1987): Natural Semantics. In: STACS’87, LNCS 247, Springer, pp. 22–39.

[6] X. Leroy & H. Grall (2009): Coinductive Big-Step Operational Semantics. Inf. Comput. 207(2), pp.
284–304.

[7] K. Nakata & T. Uustalu (2009): Trace-Based Coinductive Operational Semantics for While. In:
TPHOLs’09, LNCS 5674, Springer, pp. 375–390.

2An appendix with pretty-big-step rules is at: http://cs.swansea.ac.uk/~cscbp/nwpt14-appendix.pdf

3

http://cs.swansea.ac.uk/~cscbp/nwpt14-appendix.pdf

Divergence as State in Coinductive Big-Step Semantics C. Bach Poulsen and P. D. Mosses

A Divergence in Pretty-Big-Step Semantics

A pretty-big-step evaluates a single sub-term at a time. If implemented näıvely, pretty-big-step
rules evaluating a single subterm at a time will be self-applicative. Inhibiting self-applicative
rules requires extra structure at the syntax level. Following Charguéraud [2], we can add term
constructors for distinguishing which sub-terms have been evaluated already. Alternatively, we
can follow our previous work [1] and introduce term and expression constructors that make
terms and values syntactically distinguishable.

A.1 Charguéraud’s Pretty-Big-Step Semantics

We recall Charguéraud’s definition of call-by-value λ-calculus, but where we follow Leroy and
Grall in not using a separate constructor for values:

Expressions 3 e ::= o | app1(e, e) | app2(e, e) Outcomes 3 o ::= a | div

Here, a ∈ Terms as defined above. The pretty-big-step rules equivalent to Charguéraud’s are:

c⇒ c Const
λx.a⇒ λx.a

Fun
a1 ⇒ v1 app1(v1, a2)⇒ v

a1a2 ⇒ v App

v1 ∈ Values
a2 ⇒ v2 app2(v1, v2)⇒ v

app1(v1, a2)⇒ v
App1

v2 ∈ Values b[x← v2]⇒ v

app2(λx.b, v2)⇒ v
App2

app1(div, a2)⇒ div
App1-Div

v1 ∈ Values

app1(v1, div)⇒ div
App2-Div

A.2 Divergence as State in Pretty-Big-Step Semantics

Rather than augment the final results by a div term, we can use divergence as state. This avoids
the App1-Div and App2-Div rules.

Expressions 3 e ::= a | app1(e, e) | app2(e, e)

c/� ⇒ c/�
Const

λx.a/� ⇒ λx.a/�
Fun

a1/� ⇒ v1/δ app1(v1, a2)/δ ⇒ v/δ′
a1a2/� ⇒ v/δ′

App

v1 ∈ Values
a2/� ⇒ v2/δ app2(v1, v2)/δ ⇒ v/δ′

app1(v1, a2)/� ⇒ v/δ′
App1

v2 ∈ Values b[x← v2]/� ⇒ v/δ

app2(λx.b, v2)/� ⇒ v/δ
App2

a/� ⇒ b/�
Div

4

	Introduction and Background
	Divergence as State
	Concluding Remarks
	Divergence in Pretty-Big-Step Semantics
	Charguéraud's Pretty-Big-Step Semantics
	Divergence as State in Pretty-Big-Step Semantics

