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It has been an open question as to whether the Modular Structural Operational Semantics frame-
work can express the dynamic semantics of call/cc. This paper shows that it can, and furthermore,
demonstrates that it can express the more general delimited control operators control and shift.

1 Introduction

Modular Structural Operational Semantics (MSOS) [25, 26, 27] is a variant of the well-known Structural
Operational Semantics (SOS) framework [29]. The principal innovation of MSOS relative to SOS is that
it allows the semantics of a programming construct to be specified independently of any semantic entities
with which it does not directly interact. For example, function application can be specified by MSOS
rules without mentioning stores or exception propagation.

While it is known that MSOS can specify the semantics of programming constructs for exception
handling [7, 8, 25], it has been unclear whether MSOS can specify more complex control-flow operators,
such as call/cc [1, 9]. Indeed, the perceived difficulty of handling control operators has been regarded
as one of the main limitations of MSOS relative to other modular semantic frameworks (e.g. [30, Sec-
tion 2]). This paper demonstrates that the dynamic semantics of call/cc can be specified in MSOS, with
no extensions to the MSOS framework required. We approach this by first specifying the more general
delimited control operators control [18, 19, 34] and shift [12, 13, 14], and then specifying call/cc in terms
of control. In contrast to most other operational specifications of control operators given in direct style
(e.g. [18, 22, 24, 33]), ours is based on labelled transitions, rather than on evaluation contexts.

We will begin by giving a brief overview of delimited continuations (Section 2) and MSOS (Sec-
tion 3). The material in these two sections is not novel, and can be skipped by a familiar reader. We will
then present our MSOS specification of the dynamic semantics of delimited control operators (Section 4).
To ensure that our MSOS specification does indeed define the same control operators as described in the
literature, we provide a proof of equivalence between our specification and one based on evaluation
contexts (Section 5).

2 Delimited Continuations

At any point in the execution of a program, the current continuation represents the rest of the computa-
tion. In a meta-language sense, a continuation can be understood as a context in which a program term
can be evaluated. Control operators allow the current continuation to be treated as an object in the lan-
guage, by reifying it as a first-class abstraction that can be applied and manipulated. The classic example
of a control operator is call/cc [1, 9].
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Delimited continuations generalise the notion of a continuation to allow representations of partial
contexts, relying on a distinction between inner and outer context. Control operators that manipulate
delimited continuations are always associated with control delimiters. The most well-known delimited
control operators are control (associated with the prompt delimiter) [18, 19, 34] and shift (associated with
the reset delimiter) [12, 13, 14], both of which can be used to simulate call/cc. The general idea of control
and shift is to capture the current continuation up to the innermost enclosing delimiter, representing
the inner context. We will give an informal description of control in this section. The formal MSOS
specification of control is given in Section 4, where we also specify shift and call/cc in terms of control.

control is a (call-by-value) unary operator that takes a higher-order function f as its argument, where
f expects a reified continuation as its argument. When executed, control reifies the current continuation,
up to the innermost enclosing prompt, as a function k. That inner context is then discarded and replaced
with the application f k. Other than its interaction with control, prompt is simply a unary operator that
evaluates its argument and returns the resulting value.

Let us consider some examples. In the following expression, the continuation k is bound to the
function (λx. 2∗ x), the result of the prompt application is 14, and the expression evaluates to 15:

1+prompt(2∗ control(λk. k 7)) ; 15

A reified continuation can be applied multiple times, for example:

1+prompt(2∗ control(λk. k(k 7))) ; 29

Furthermore, a continuation need not be applied at all. For example, in the following expression, the
multiplication by two is discarded:

1+prompt(2∗ control(λk. 7)) ; 8

In the preceding examples, the continuation k could have been computed statically. However, in
general, the current continuation is the context at the point in a program’s execution when control is exe-
cuted, by which time some of the computation in the source program may already have been performed.
For example, the following program will print ABB:

prompt( print ′A′ ; control(λk. (k () ; k ())) ; print ′B′ )  ABB

The command (print ′A′) is executed before the control operator, so does not form part of the continuation
reified by control. In this case, k is bound to (λx. (x ; print ′B′)), and so B is printed once for every
application of k.

Further examples of control can be found in the online test suite accompanying this paper [32], and
in the literature [18, 19].

3 Modular SOS

The rules in this paper will be presented using Implicitly Modular SOS (I-MSOS) [27], a variant of
MSOS that has a notational style similar to conventional SOS. I-MSOS can be viewed as syntactic sugar
for MSOS. We assume the reader is familiar with SOS (e.g. [3, 29]) and the basics of MSOS [25, 26, 27].

The key notational convenience of I-MSOS is that any semantic entities (e.g. stores or environments)
that are not mentioned in a rule are implicitly propagated between the premise(s) and conclusion, al-
lowing entities that do not interact with the programming construct being specified to be omitted from
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the rule. Two types of semantic entities are relevant to this paper: inherited entities (e.g. environments),
which, if unmentioned, are implicitly propagated from the conclusion to the premises, and observable
entities (emitted signals, e.g. exceptions), which, if unmentioned, are implicitly propagated from a sole
premise to the conclusion. Observable entities are required to have a default value, which is implicitly
used in the conclusion of rules that lack a premise and do not mention the entity. Note that by premise,
we refer specifically to a transition of the → relation, not any side conditions on the rule (which, for
notational convenience, we also write above the line).

To demonstrate the specification of control operators using I-MSOS rules, this paper will use the
funcon framework [8]. This framework contains an open collection of modular fundamental constructs
(funcons), each of which has its semantics specified independently by I-MSOS rules. Funcons facili-
tate formal specification of programming languages by serving as a target language for a specification
given by an inductive translation, in the style of denotational semantics. However, this paper is not con-
cerned with the translation of control operators from any specific language: our aim is to give MSOS
specifications of control operators, and the funcon framework is a convenient environment for specifying
prototypical control operators. Examples of translations into funcons can be found in [8, 28].

We will now present some examples of funcons, and their specifications as small-step I-MSOS rules.
No familiarity with the funcon framework is required: for the purposes of understanding this paper the
funcons may simply be regarded as abstract syntax. We typeset funcon names in bold, meta-variables in
Capitalised Italic, and the names of semantic entities in sans-serif. When we come to funcons for control
operators, we will continue to use italic when referring to the control operator in general, and bold when
referring to the funcon specifically.

Figure 1 presents I-MSOS rules for the exception-handling funcons throw and catch [8]. The idea
is that throw emits an exception signal, and catch detects and handles that signal. The first argument of
catch is the expression to be evaluated, and the second argument (a function) is the exception handler.
Exception signals use an observable entity named exc, which is written as a label on the transition arrow.
The exc entity has either the value none, denoting the absence of an exception, or some(V ), denoting
the occurrence of an exception with value V . The side condition val(V ) requires the term V to be a value,
thereby controlling the order in which the rules can be applied. In the case of throw, first the argument is
evaluated to a value (Rule 1), and then an exception carrying that value is emitted (Rule 2). In the case of
catch, the first argument E is evaluated while no exception occurs (Rule 3). If an exception does occur,
then the handler H is applied to the exception value and the computation E is abandoned (Rule 4). If E
evaluates to a value V , then H is discarded and V is returned (Rule 5).

Observe that rules 1 and 5 do not mention the exc entity. In Rule 1 it is implicitly propagated from
premise to conclusion, and in Rule 5 it implicitly has the default value none. Also observe that none of
the rules in Figure 1 mention any other entities such as environments or stores; any such entities are also
implicitly propagated.

E→ E ′

throw(E)→ throw(E ′)
(1)

val(V )

throw(V )
exc some(V )−−−−−−−→ stuck

(2)

E exc none−−−−−→ E ′

catch(E,H)
exc none−−−−−→ catch(E ′,H)

(3)

E
exc some(V )−−−−−−−→ E ′

catch(E,H)
exc none−−−−−→ apply(H,V )

(4)

val(V )

catch(V,H)→V
(5)

Figure 1: I-MSOS rules for exception handling.
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ρ(I) =V
env ρ ` bv(I)→V

(6)

env ρ ` lambda(I,E)→ closure(ρ, I,E) (7)

val(closure(ρ, I,E)) (8)

E1→ E ′1
apply(E1,E2)→ apply(E ′1,E2)

(9)

val(V ) E→ E ′

apply(V,E)→ apply(V,E ′)
(10)

val(V1) val(V2)

apply(closure(ρ, I,V1),V2)→V1
(11)

val(V ) env ({I 7→V}/ρ) ` E→ E ′

env ` apply(closure(ρ, I,E),V )→ apply(closure(ρ, I,E ′),V )
(12)

Figure 2: I-MSOS rules for call-by-value lambda calculus.

Figure 2 presents I-MSOS rules for identifier lookup (bv, “bound-value”), abstraction (lambda), and
application (apply). Note that the closure funcon is a value constructor [7] (specified by Rule 8), and
thus has no transition rules of its own. We present these rules here for completeness, as these funcons
will be used when defining the semantics of control operators in Section 4.

Again, observe that rules 9–11 do not mention the environment env; it is propagated implicitly.
Furthermore, consider that none of the rules in Figure 1 mention the environment env, and none of
the rules in Figure 2 mention the exc signal. However, the modular nature of I-MSOS specifications
allows the two sets of rules to be combined without modification, with implicit propagation handling the
unmentioned entities. For comparison, in Figure 3 we present a conventional SOS specification of this
call-by-value lambda calculus combined with exception handling, in which both semantic entities are
mentioned explicitly in every rule.

env ρ ` E exc X−−−→ E ′

env ρ ` throw(E) exc X−−−→ throw(E ′)

val(V )

env ρ ` throw(V )
exc some(V )−−−−−−−→ stuck

env ρ ` E exc none−−−−−→ E ′

env ρ ` catch(E,H)
exc none−−−−−→ catch(E ′,H)

env ρ ` E
exc some(V )−−−−−−−→ E ′

env ρ ` catch(E,H)
exc none−−−−−→ apply(H,V )

val(V )

env ρ ` catch(V,H)
exc none−−−−−→V

ρ(I) =V

env ρ ` bv(I) exc none−−−−−→V

env ρ ` lambda(I,E) exc none−−−−−→ closure(ρ, I,E)

env ρ ` E1
exc X−−−→ E ′1

env ρ ` apply(E1,E2)
exc X−−−→ apply(E ′1,E2)

val(V ) env ρ ` E exc X−−−→ E ′

env ρ ` apply(V,E) exc X−−−→ apply(V,E ′)

val(V ) env ({I 7→V}/ρ) ` E exc X−−−→ E ′

env ` apply(closure(ρ, I,E),V )
exc X−−−→

apply(closure(ρ, I,E ′),V )

val(V1) val(V2)

env ρ ` apply(closure(ρ, I,V1),V2)
exc none−−−−−→V1

Figure 3: SOS rules for lambda calculus with exception handling.
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4 I-MSOS Specifications of Control Operators

We now present a dynamic semantics for control operators in the MSOS framework. We specify control
and prompt directly, and then specify shift, reset and call/cc in terms of control and prompt. Our approach
is signal-based in a similar manner to the I-MSOS specifications of exceptions (Figure 1): a control
operator emits a signal when executed, and a delimiter catches that signal and handles it. Note that there
is no implicit top-level delimiter around a funcon program—a translation to funcons from a language
that does have an implicit top-level delimiter should insert an explicit top-level delimiter.

4.1 Overview of our Approach

Whether the semantics of control operators can be specified using MSOS has been considered an open
problem ([30, Section 2]). We suspect that this is because there is no explicit representation of a term’s
context in the MSOS framework—any given rule only has access to the current subterm and the contents
of any semantic entities—so it is not immediately obvious how to capture the context as an abstraction.

Our approach is to construct the current continuation of a control operator in the rule for its enclosing
delimiter. We achieve this by exploiting the way that a small-step semantics, for each step of computa-
tion, builds a derivation tree from the root of the program term to the current operation. Thus, for any
step at which a control operator is executed, not only will a rule for the control operator be part of the
derivation, but so too will a rule for the enclosing delimiter. At each such step, the current continuation
corresponds to an abstraction of the control operator (and its argument) from the subterm of the enclosing
delimiter, and thus can be constructed from that subterm.

We represent reified continuations as first-class abstractions, using the lambda funcon from Sec-
tion 3. Constructing the abstraction is achieved in two stages: the rule for control replaces the oc-
currence of control (and its argument) with a fresh identifier, and the rule for prompt constructs the
abstraction from the updated subterm. At a first approximation, this suggests the following rules:

fresh-id(I)

control(F)
ctrl some(F,I)−−−−−−−−→ bv(I)

(13)

E
ctrl some(F,I)−−−−−−−−→ E ′ K = lambda(I,E ′)

prompt(E) ctrl none−−−−−→ prompt(apply(F,K))
(14)

The side condition fresh-id(I) requires that the identifier I introduced by this rule does not already
occur in the program. Rule 13 replaces the term control(F) with bv(I), and emits a signal (ctrl) contain-
ing the function F and the identifier I. The signal is then caught and handled by prompt in Rule 14. The
abstraction K representing the continuation of the executed control operator is constructed by combining
I with the updated subterm E ′ (which will now contain bv(I) in place of control(F)).

4.2 The Auxiliary Environment

There is one problem with the approach we have just outlined, which is that the identifier I is introduced
dynamically when the control operator executes, by which time closures may have already formed. In
particular, if control occurs inside the body of a lambda, and the enclosing prompt is outside that
lambda, then the bv(I) funcon would be introduced inside a closure that has already formed, and hence
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does not contain a binding for I. For example, consider the evaluation of the following term:

prompt(lambda(x,control(lambda(k,bv(k)))))

→ { by (7) }
prompt(closure( /0,x,control(lambda(k,bv(k)))))

→ { by (14) }
prompt(apply(lambda(k,bv(k)), lambda(i,closure( /0,x,bv(i)))))

The occurrence of bv(i) is now inside a closure containing an empty environment. Were that closure to
be applied (say if this was a subterm of a larger program), then the body of the closure would get stuck,
as Rule 12 would provide an environment containing only x, which Rule 6 could not match.

This problem arises as a consequence of our choice to specify the semantics of lambda calculus using
environments and closures. If we had instead given a semantics using substitution, then this problem
would not have arisen. However, we prefer to use environments because they enable a more modular
specification: a substitution-based semantics requires substitution to be defined over every construct in
the language. Moreover, environments allow straightforward semantics for dynamic scope.

Our solution is to introduce an auxiliary environment that is not captured in closures. Figure 4
specifies aux-bv(I), which looks up the identifier I in this auxiliary environment, and aux-let-in(I,V,E),
which binds the identifier I to the value V in the auxiliary environment and scopes that binding over
the expression E. We make use of these funcons in the next subsection, where we give our complete
specification of control and prompt.

µ(I) =V
aux-env µ ` aux-bv(I)→V

(15)

E1→ E ′1
aux-let-in(I,E1,E2)→ aux-let-in(I,E ′1,E2)

(16)

val(V ) aux-env ({I 7→V}/µ) ` E→ E ′

aux-env µ ` aux-let-in(I,V,E)→ aux-let-in(I,V,E ′)
(17)

val(V1) val(V2)

aux-let-in(I,V1,V2)→V2
(18)

Figure 4: I-MSOS rules for bindings in the auxiliary environment.

4.3 Dynamic Semantics of control and prompt

We specify control as follows:

E→ E ′

control(E)→ control(E ′)
(19)

val(F) fresh-id(I)

control(F)
ctrl some(F,I)−−−−−−−−→ aux-bv(I)

(20)
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Rule 19, in combination with the val(F) premise on Rule 20, ensures that the argument function is
evaluated to a closure before Rule 20 can be applied. Notice that Rule 20 uses aux-bv, in contrast to the
preliminary Rule 13 which used bv.

We then specify prompt as follows:

val(V )

prompt(V )→V
(21)

E ctrl none−−−−−→ E ′

prompt(E) ctrl none−−−−−→ prompt(E ′)
(22)

E
ctrl some(F,I)−−−−−−−−→ E ′ K = lambda(I,aux-let-in(I,bv(I),E ′))

prompt(E) ctrl none−−−−−→ prompt(apply(F,K))
(23)

Rule 21 is the case when the argument is a value; the prompt is then discarded. Rule 22 evaluates the
argument expression while no ctrl signal is being emitted by that evaluation. Rule 23 handles the case
when a ctrl signal is detected, reifying the current continuation and passing it as an argument to the
function F . Notice that, unlike in the preliminary Rule 14, I is rebound using aux-let-in.

Rules 19–23 are our complete I-MSOS specification of the dynamic semantics of control and
prompt, relying only on the existence of the lambda-calculus and auxiliary-environment funcons from
figures 2 and 4. These rules are modular: they are valid independently of whether the control operators
coexist with a mutable store, exceptions, input/output signals, or other semantic entities. Except for the
use of an auxiliary environment, our rules correspond closely to those in specifications of control and
prompt based on evaluation contexts [18, 24]. However, our rules communicate between control and
prompt by emitting signals, and thus do not require evaluation contexts. In Section 5, we present a proof
of equivalence between our specification and a conventional one based on evaluation contexts.

4.4 Dynamic Semantics of shift and reset

The shift operator differs from control in that every application of a reified continuation is implicitly
wrapped in a delimiter, which has the effect of separating the context of that application from its inner
context [5]. This difference between control and shift is analogous to that between dynamic and static
scoping, insofar as with shift, the application of a reified continuation cannot access its context, in the
same way that a statically scoped function cannot access the environment in which it is applied.

A shift funcon can be specified in terms of control as follows:

E→ E ′

shift(E)→ shift(E ′)
(24)

val(F) fresh-id(K) fresh-id(X)

shift(F)→ control(lambda(K,apply(F, lambda(X ,reset(apply(bv(K),bv(X)))))))
(25)

The key point is the insertion of the reset delimiter; the rest of the lambda-term is merely an η-expansion
that exposes the application of the continuation K so that the delimiter can be inserted (following [5]).
Given this definition of shift, the reset delimiter coincides exactly with prompt:

reset(E)→ prompt(E) (26)
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Alternatively, the insertion of the extra delimiter could be handled by the semantics of reset rather
than that of shift:

val(V )

reset(V )→V
(27)

E ctrl none−−−−−→ E ′

reset(E) ctrl none−−−−−→ reset(E ′)
(28)

E
ctrl some(F,I)−−−−−−−−→ E ′ K = lambda(I,reset(aux-let-in(I,bv(I),E ′)))

reset(E) ctrl none−−−−−→ reset(apply(F,K))
(29)

The only difference between rules 21–23 and rules 27–29 (other than the funcon names) is the definition
of K in Rule 29, which here has a delimiter wrapped around the body of the continuation. Given this
definition of reset, the shift operator now coincides exactly with control:

shift(E)→ control(E) (30)

This I-MSOS specification in Rules 27–30 is similar to the evaluation-context based specification of shift
and reset in [24, Section 2].

4.5 Dynamic Semantics of abort and call/cc

The call/cc operator is traditionally undelimited: it considers the current continuation to be the entirety
of the rest of the program. In a setting with delimited continuations, this can be simulated by requiring
there to be a single delimiter, and for it to appear at the top-level of the program. Otherwise, the two
distinguishing features of call/cc relative to control and shift are first that an applied continuation never
returns, and second that if the body of call/cc does not invoke a continuation, then the current continuation
is applied to the result of the call/cc application when it returns.

To specify call/cc, we follow Sitaram and Felleisen [34, Section 3] and first introduce an auxiliary
operator abort, and then specify call/cc in terms of control, prompt and abort. The purpose of abort is to
terminate a computation (up to the innermost enclosing prompt) with a given value:

E→ E ′

abort(E)→ abort(E ′)
(31)

val(V ) fresh-id(I)
abort(V )→ control(lambda(I,V ))

(32)

We achieve the first distinguishing feature of call/cc by placing an abort around any application of a con-
tinuation (preventing it from returning a value), and we achieve the second by applying the continuation
to the result of the F application (which resumes the current continuation if F returns a value):

E→ E ′

callcc(E)→ callcc(E ′)
(33)

val(F) fresh-id(K) fresh-id(X)

callcc(F)→
control(lambda(K,apply(bv(K),apply(F, lambda(X ,abort(apply(bv(K),bv(X))))))))

(34)
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4.6 Other Control Effects

In Section 3 we presented a direct specification of exception handling using a dedicated semantic entity.
If throw and catch (Figure 1) were used in a program together with the control operators from this
section, this would give rise to two sets of independent control effects, each with independent delimiters.
An alternative would be to specify exception handling indirectly in terms of the control operators (e.g.
following Sitaram and Felleisen [34]), in which case the delimiters and semantic entity would be shared.
MSOS can specify either approach, as required by the language being specified.

Beyond the control operators discussed in this section, further and more general operators for ma-
nipulating delimited continuations exist, such as those of the CPS hierarchy [13]. These are beyond the
scope of this paper, and remain an avenue for future work.

5 Adequacy

Our SOS model of call-by-value lambda calculus extended with delimited control, which we have pre-
sented using I-MSOS rules, is provably equivalent to one based on the reduction semantics (RS) of
lambda terms where the evaluation strategy is specified using evaluation contexts. Reduction models for
delimited control based on evaluation contexts were originally introduced in [18] and refined in [24].
The adequacy proof in this section (Prop. 8) is carried out with respect to our version of those models in
a formalism that we call RC.

Our SOS model differs from reduction models in the framework it relies on. In particular, our SOS
model uses environments and signals, whereas RC uses substitution and evaluation contexts. Moreover,
there is a difference in the notion of value: in our SOS model function application is computed using
closures, whereas RS uses β -reduction and substitution. In order to focus on the operational content of
the models, it is convenient to get above these differences. We achieve this by embedding SOS in RS
with explicit congruence rules (an embedding that we call LS), and by lifting RC to an environment-based
formalism (called LR). We define a notion of adequacy between two systems, as an input-output relation,
parametric in a translation. We show adequacy of two systems by proving that they are derivationally
equivalent (in the sense of a step-wise relation), reasoning by induction on the structure of derivations.
Our adequacy proof for SOS and RC is split into three main parts: the equivalence of SOS and LS, of
LS and LR, and of LR and RC. A more challenging approach would involve giving a formal derivation
of an RC model from SOS along the lines of [11], but that goes beyond the scope of this paper.

Here we intend to focus on equivalence with respect to delimited control. Given the equivalence
between SOS and RC with respect to call-by-value lambda calculus (λV), we show that SOS and RC
are equivalent with respect to the extension of λV with delimited control (λDC). More specifically,
we define a syntactic representation of environments (standard and auxiliary ones) using contexts and
lambda terms. We use this representation to define LS as a lambda-term encoding of SOS. Adequacy
between SOS and LS is provable with respect to a simple translation relation.

We define LR as an environment-based version of RC obtained by lambda-lifting. We consider two
distinct extensions of the LR model of λV with delimited control. The first one, which we call LR-
DC, uses the lifted control rules of the original RC model, and thus equivalence with the RC model is
straightforward. The second one, which we call LX-DC, uses the LS version of the SOS control rules.
The difference between the LS model of λDC and LX-DC, which are provably equivalent, boils down
to that between SOS transitions, based on congruence rules and also using closures, and RC transitions,
based on evaluation contexts and using only lambda expressions. The adequacy of LX-DC and LR-DC,
proved with respect to the identity translation (Prop. 7), gives us the result of primary interest.
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5.1 Reduction Semantics

Our presentation of reduction semantics with evaluation contexts (RC) follows the main lines of the λDC
model in [24]. Under the assumption that we only evaluate closed expressions, values and terms can be
defined as follows:

V = lambda(I,E) (35)

E = V | bv(I) | apply(E,E) | control(E) | prompt(E) (36)

A general notion of a context as a term with a hole can be defined by the following grammar:

C = [] | lambda(I,C) | apply(C,E) | apply(E,C) | prompt(C) | control(C) (37)

The call-by-value (CBV) evaluation strategy can be specified using the more restrictive notion of a CBV
context (Q):

Q = [] | apply(Q,E) | apply(V,Q) | prompt(Q) | control(Q) (38)

In order to represent delimited continuations, an even more restrictive notion is needed: a pure context
(P-context), which is a CBV-context that does not include control delimiters [24]:

P = [] | apply(P,E) | apply(V,P) | control(P) (39)

The meta-linguistic notation C[E] (Q[E], P[E]) is used to represent a term factored into a context and
the subterm that fills the hole—we can think of this as a form of term annotation. This factorisation is
unique for the cases that we are considering.

The only reduction rules needed to specify λV are β -reduction and context propagation. These can
be presented as follows (giving us the RC-V model), using { 7→ } as meta-level notation for capture-
avoiding uniform substitution:

apply(lambda(I,E),V )−→ E{bv(I) 7→V} (40)

E −→ E ′

Q[E]−→ Q[E ′]
(41)

The reduction rules for prompt and control can be formulated as follows (giving us the RC-DC model),
making use of P-contexts:

prompt(V )−→V (42)

val(F) K = lambda(I,P[bv(I)]) fresh-id(I)
prompt(P[control(F)])−→ prompt(apply(F,K))

(43)

In a system based on reduction semantics, observational equivalence can be defined as the small-
est congruence relation ≡ on terms that extends reduction equivalence with functional extensionality,
i.e. such that

∀V. apply(F,V )≡ apply(F ′,V )

F ≡ F ′

In presenting models based on RS, we typeset all construct names in sans-serif. We refer to SOS
values as ValSOS and to RC ones as ValRC. When needed, we subscript −→ and ≡ accordingly. We define
derivational equivalence and adequacy with respect to a translation relation (not mentioned in the case
that it is an identity), as follows.
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Def. 1 Given two systems A and B, respectively defined on languages LA and LB with values ValA and
ValB, and a one-to-one relation R⊆ (LA,LB), we say that

1. A and B are adequate with respect to R (A∼R B) whenever the following hold:
A) If E −→∗A V , with V ∈ ValA, then there exist E ′a,E

′′
a ∈ LA, E ′b,E

′′
b ∈ LB, V ′ ∈ ValB s.t.

E ≡A E ′a, V ≡A E ′′a , R(E ′a,E
′
b), R(E ′′a ,E

′′
b ), E ′′b ≡B V ′ and E ′b −→∗B V ′

B) If E −→∗B V , with V ∈ ValB, then there exist E ′a,E
′′
a ∈ LA, E ′b,E

′′
b ∈ LB, V ′ ∈ ValA s.t.

E ≡B E ′b, V ≡B E ′′b , R(E ′a,E
′
b), R(E ′′a ,E

′′
b ), E ′′a ≡A V ′ and E ′a −→∗B V ′

2. A and B are derivationally equivalent with respect to R whenever the following hold:
A) E1−→A E2 whenever there exist E3, E4, E ′1, E ′2, E ′3, E ′4 s.t. E1≡A E3, E2≡A E4, R(E3,E ′3),
R(E4,E ′4), E ′3 ≡B E ′1, E ′4 ≡B E ′2 and E ′1 −→∗B E ′2
B) E1−→B E2 whenever there exist E3, E4, E ′1, E ′2, E ′3, E ′4 s.t. E1≡B E3, E2≡B E4, R(E ′3,E3),
R(E ′4,E4), E ′3 ≡A E ′1, E ′4 ≡A E ′2 and E ′1 −→∗A E ′2

We define relational composition as R1 ◦R2 = λxy. ∃z. R1(x,z)∧R2(z,y).

5.2 Representing SOS as LS

In this section we define LS, as an encoding of SOS in lambda terms. Unlike reduction semantics, our
SOS models rely internally on a linguistic extension to account for closures and the auxiliary environment
notation. For this reason, we need an extended internal language, including the following additional
constructs: closure(ρ, I,E) for closures, aux-bv(I) for auxiliary identifier lookup, and aux-let-in(I,E,E)
for auxiliary let bindings; these constructs are not meant to be included in the source language definition.
In each expression aux-let-in(I,E,E ′), we require I to be used at most once in E ′.

In order to represent environments, we introduce a notion of R-context:

R = [] | apply(lambda(I,R),V ) (44)

We tacitly assume that all bound variables in R are distinct. Each SOS transition specified by

env ρ ` E −→ E ′

can be embedded as
Rρ [E]−→ Rρ [E ′]

where, for ρ = {I1 7→ V1, . . . , In 7→ Vn}, Rρ = apply(lambda(In,(. . . ,apply(lambda(I1, []),V1), . . .)),Vn).
We silently assume permutation in R-contexts. We introduce M-contexts to represent the auxiliary en-
vironment, in a similar manner to R-contexts, though using aux-let-in. In order to represent signals, we
extend this notion to one of S-context, introducing a new ternary value constructor ctrl, which is not part
of the expression definition but only of the RS representation of SOS.

M = [] | aux-let-in(I,V,M) (45)

S = M | ctrl(V, I,M) (46)

SOS transitions specified by

A) aux-env µ,env ρ ` E ctrl none−−−−−→ E ′ B) aux-env µ,env ρ ` E
ctrl some(F,I)−−−−−−−−→ E ′

can be represented, respectively, as

A) Mµ [Rρ [E]]−→Mµ [Rρ [E ′]] B) Mµ [Rρ [E]]−→ ctrl(F, I,Mµ [Rρ [E ′]])
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where, for µ = {I1 7→ V1, . . . , In 7→ Vn}, Mµ = aux-let-in(In,Vn, . . .aux-let-in(I1,V1, [])). We assume that
S-bound variables are distinct from each other and from all the R-bound ones. As with R-contexts, we
silently assume permutation for M-contexts.

In this way, we define a one-to-one translation relation T( , ) between SOS configurations and LS
expressions. Applying the translation to the SOS rules gives us the LS models for λV and λDC (resp.
LS-V and LS-DC). In particular, the rule for bv, which uses the environment, can be expressed as follows:

S[apply(lambda(I,R[bv(I)]),V )]−→ S[apply(lambda(I,R[V ]),V )] (47)

The aux-bv rule, which uses the auxiliary environment, takes the following form:

aux-let-in(I,V,M[R[aux-bv(I)]])−→ aux-let-in(I,V,M[R[V ]]) (48)

The LS model for λDC extends LS-V with three more rules: the SOS rule for control,

val(F) fresh-id(I)
M[R[control(F)]]−→ ctrl(F, I,M[R[aux-bv(I)]])

(49)

an additional congruence rule (which can only match Rule 49),

M[R[E]]−→ ctrl(F, I,M[R[E ′]])
M[R[P[E]]]−→ ctrl(F, I,M[R[P[E ′]]])

(50)

and an encoding of the SOS rule for control-in-prompt (Rule 23).

M[R[E]]−→ ctrl(F, I′,M[R[E ′]]) K = lambda(I,aux-let-in(I′,bv(I),E ′)) fresh-id(I)
M[R[prompt(E)]]−→M[R[prompt(apply(F,K)]]

(51)

Since there is a one-to-one correspondence between LS and SOS transitions (treating R- and M-
permutations as silent transitions), and taking for simplicity the identity relation modulo reordering of
the environments as observational equivalence in SOS, the following is straightforward.

Prop. 1 The LS model of λV and the corresponding SOS one are derivationally equivalent and adequate
with respect to the translation T , and similarly for the LS and SOS models of λDC.

Proof: First we prove derivational equivalence, which is straightforward for λV. The LS control rules
correspond to the SOS ones, given the representation of the auxiliary environments and signals. Ade-
quacy follows as the definition of value is the same in all these systems.

5.3 Lifting RC to LR

To facilitate comparison with LS, we define LR as an environment-based version of RC, using R- and
M-contexts to represent environments as in LS, and also extend the language with aux-let-in and closure.
In the LR models, the reduction rules can be specified as in RC, relying on evaluation contexts. For the
way aux-let-in and closure are used, no change is needed in the definition of context. However, since
reduction steps now have to be lifted by R- and M-contexts, we replace the single context propagation
rule that sufficed in RC with the four following rules: lifting, lifted congruence and R- and M-lowering.
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E −→ E ′

M[R[E]]−→M[R[E ′]]
(52)

M[R[E]]−→M[R[E ′]]
M[R[Q[E]]]−→M[R[Q[E ′]]]

(53)

M[apply(lambda(I,R[E]),V )]−→M[apply(lambda(I,R[E ′]),V )]

M[R[apply(lambda(I,E),V )]]−→M[R[apply(lambda(I,E ′),V )]]
(54)

aux-let-in(I,V,M[R[E]])−→ aux-let-in(I,V,M[R[E ′]])
M[R[aux-let-in(I,V,E)]]−→M[R[aux-let-in(I,V,E ′)]]

(55)

We assume that LR models include R- and M-permutations, as well as the bv and aux-bv rules, and
Rule 50. Notice that evaluation can also apply to open terms, however we do not need to change our
definition of value, as substitution of free variables is dealt with as in LS, by the bv rule. We also need
the following rule to deal with closures:

ρ = {I1 7→V1, . . . In 7→Vn} free-vars(E)⊆ {I1, . . . , In}
closure(ρ, I,E)−→ apply(lambda(In,(. . . ,apply(lambda(I1, lambda(I,E)),V1), . . .)),Vn)

(56)

This gives us the LR model of λV (LR-V). We can extend this model with rules for delimited control
in two ways: to simulate RC (LR-DC), or to simulate SOS (LX-DC). The LR-DC rules for prompt and
control are those based on the RC one (i.e. they are the lifted version of Rules 42 and 43), and they do
not involve any use of the auxiliary notation. LR-DC is the extension of LR-V with these rules. On the
other hand, the LX-DC model is obtained by extending LR-V with the LS control rules (Rules 49 and
51, which rely on the auxiliary notation).

The following can be proved for all the systems we are considering, i.e. with respect to ≡X where
X ∈ {LS-V,LR-V,LS-DC,LX-DC,LR-DC}.
Prop. 2 A) V ∈ValSOS whenever there exists V ′ ∈ValRC such that V ≡X V ′.

B) S[Rρ [apply(lambda(I,E),V1)]] −→LS V2 with V1,V2 ∈ ValSOS whenever there exist V3,V4 ∈
ValRC such that S[[apply(closure(ρ, I,E),V3)]] −→LR V4, with V1 ≡X V3 and V2 ≡X V4.

The following provable equivalences correspond respectively to the bv rule, to β -reduction, and to
aux-let-in elimination, for ≡X as before:

apply(lambda(I,bv(I)),V )≡X apply(lambda(I,V ),V ) (57)

apply(lambda(I,E),V ) ≡X E{bv(I) 7→V} (58)

aux-let-in(I,V,E)≡X E{aux-bv(I) 7→V} (59)

The following can now be proved:

Prop. 3 apply(lambda(I,aux-let-in(I′,bv(I),P[aux-bv(I′)])),V ) ≡X apply(lambda(I,P[bv(I)]),V )

Proof: apply(lambda(I,aux-let-in(I′,bv(I),P[aux-bv(I′)])),V ) ≡X aux-let-in(I′,V,P[aux-bv(I′)]), by
Equiv. 58.

aux-let-in(I′,V,P[aux-bv(I′)]) ≡X P[V ], by Equiv. 59, observing that aux-bv(I′) cannot occur free
in P, as it must be used at most once in P[aux-bv(I′)].

P[V ] ≡X apply(lambda(I,P[bv(I)]),V ), by Equiv. 58.

The following is an immediate consequence of Prop. 3, applying functional extensionality.

lambda(I,aux-let-in(I′,bv(I),P[aux-bv(I′)])) ≡X lambda(I,P[bv(I)]) (60)
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5.4 Adequacy of SOS and RC

We first show that the LR models and the RC ones are equivalent.

Prop. 4 LR-V and RC-V are adequate, and so too are LR-DC and RC-DC.

Proof: The language of RC is included in that of LR, hence we can take the identity on RC (denoted
by IdRC) as the translation. The LR models can be obtained by a lambda-lifting refactoring of the RC
models, and this gives equivalent systems, under a change of the evaluation strategy that affects only
the top level. We prove derivational equivalence by induction on the structure of derivations, relying
on Equiv. 59 and Rule 56 to eliminate the additional LR syntax, observing that aux-let-in and closure
are inessential in LR-DC (they can only be eliminated without leading to any new values). Adequacy
follows immediately as values are defined in the same way in the two systems.

We consider the relationship between the different representations of λV.

Prop. 5 The LS model of λV and the corresponding LR one are adequate.

Proof: The two models use the same language, hence we can take the identity translation. They differ
on congruence rules and reduction of function application. Congruence rules in LR are expressed using
CBV-contexts, unlike in LS, but both are equivalent specifications of CBV. For equivalence with respect
to values and function application, we rely on Prop. 2.

We extend this result to SOS-style delimited control.

Prop. 6 LS-DC and LX-DC are adequate.

Proof: We first prove derivational equivalence with respect to identity using Prop. 5 and the fact that the
two extensions are obtained by adding the same rules.

We finally compare SOS-style and RC-style delimited control.

Prop. 7 LX-DC and LR-DC are derivationally equivalent and adequate.

Proof: We prove derivational equivalence by induction on the structure of derivations, with respect to
the identity translation. The two systems are equivalent up to λV by Prop. 4, so the only interesting case
is delimited control, in which respect LX-DC stepwise behaves as LS-DC. The lifted version of the RC
prompt rule (Rule 42) is in both systems. Rules 49 and 50 can be added to LR-DC without expanding the
set of derivable values. Thus the only possible difference between the two systems is between the natural
LR control rule (the lifted version of Rule 43) of LR-DC, and the LS control-in-prompt rule (Rule 51)
of LX-DC. We now show that the two rules are interderivable (i.e. given the system with one rule, the
other one is derivable). First we observe that, by Eq. 60, the specification of the continuation K in either
rule is equivalent to that in the other, and therefore interchangeable.

From S to R: in order to derive the LR-DC rule from the LX-DC one, we observe that a lifted
expression M[R[P[control(F)]]], where F is a value, can be reduced to ctrl(F, I,M[R[P[aux-bv(I)]]]) in
LX-DC, using the control rule (Rule 49), and the applicable congruence rule (Rule 50). This gives us
the premise for the application of the LX-DC control-in-prompt rule to M[R[prompt(P[control(F)])]] in
a way that simulates the LR-DC control rule.

From R to S: in LX-DC (as in LS-DC) a one-step transition from M[R[E]] to ctrl(F, I,M[R[E ′]]) is
only possible provided E ≡ P[control(F)] and E ′ ≡ P[aux-bv(I)] for some P (possibly relying on the
conversion of closures to function applications). Therefore, the LR-DC control rule can be applied to
M[R[prompt(E)]] to simulate Rule 51.
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Diagramatically, the overall proof can be presented as follows (where vertical arrows denote model
inclusion).

SOS-DC ∼T LS-DC ∼Id LX-DC ∼Id LR-DC ∼IdRC RC-DC
↑ ↑ ↑ ↑ ↑

SOS-V ∼T LS-V ∼Id LR-V = LR-V ∼IdRC RC-V

Prop. 8 SOS-DC and RC-DC are derivationally equivalent and adequate with respect to T◦ IdRC

Proof: based on Props. 1, 4, 6, 7, using the fact that adequacy is transitive, by composition of the
translation relations, and by transitivity of observational equivalence.

6 Related Work

A direct way to specify control operators is by giving an operational semantics based on transition rules
and first-class continuations. We have taken this direct approach, though in contrast to most direct spec-
ifications of control operators (e.g. [18, 22, 23, 24, 30, 33]) our approach is based on emitting signals
via labelled transitions rather than on evaluation contexts. Control operators can also be given a denota-
tional semantics by transformation to continuation-passing style (CPS) [12, 16, 31, 33], or a lower-level
operational specification by translation to abstract-machine code [6, 19]. At a higher level, algebraic
characterisations of control operators have been given in terms of equational theories [18, 23].

Denotationally, any function can be rewritten to CPS by taking the continuation (itself represented as
a function) as an additional argument, and applying that continuation to the value the function would have
returned. A straightforward extension of this transformation [13] suffices to express call/cc, shift and
reset; however, more sophisticated CPS transformations are needed to express control and prompt [33].

Felleisen’s [19] initial specification of control and prompt used a small-step operational semantics
without evaluation contexts. However, this specification otherwise differs quite significantly from ours,
being based on exchange rules that push control outwards through the term until it encounters a prompt.
As an exchange rule has to be defined for every other construct in the language, this approach is in-
herently not modular. Later specifications of control and prompt used evaluation contexts and algebraic
characterisations based on the notion of abstract continuations [18], where continuations are represented
as evaluation contexts and exchange rules are not needed. Felleisen [19] also gave a lower-level opera-
tional specification based on the CEK abstract machine, where continuations are treated as frame stacks.

The shift and reset operators were originally specified denotationally, in terms of CPS semantics [12,
13]. Continuations were treated as functions, relying on the meta-continuation approach [12] which
distinguishes between outer and inner continuations. Correspondingly, the meta-continuation transfor-
mation produces abstractions that take two continuation parameters, which can be further translated to
standard CPS. A big-step style operational semantics for shift has been given by Danvy and Yang [15],
and a specification based on evaluation contexts has been given by Kameyama and Hasegawa [23], to-
gether with an algebraic characterisation.

Giving a CPS semantics to control is significantly more complex than for shift [33]. This is because
the continuations reified by shift are always delimited when applied, and so can be treated as functions,
which is not the case for control. Different approaches to this problem have been developed, including
abstract continuations [18], the monadic framework in [16], and the operational framework in [6]. Re-
lying on the introduction of recursive continuations, Shan [33] provides an alternative approach based
on a refined CPS transform. Conversely, the difference between control and shift can manifest itself
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quite intuitively in the direct specification of these operators—whether in our I-MSOS specifications
(Section 4.4), or in specifications using evaluation contexts [18, 23, 24, 33].

As shown by Filinski [20], shift can be implemented in terms of call/cc and mutable state, and from
the point of view of expressiveness, any monad that is functionally expressible can be represented in
lambda calculus with shift and reset. Moreover, control and shift are equally expressive in the untyped
lambda calculus [33]. A direct implementation of control and shift has been given by Gasbichler and
Sperber [21]. A CPS-based implementation of control operators in a monadic framework has been given
by Dyvbig et al [16]. A semantics of call/cc based on an efficient implementation of evaluation contexts
is provided in the K Framework [30].

7 Conclusion

We have presented a dynamic semantics for control operators in the MSOS framework, settling the
question of whether MSOS is expressive enough for control operators. Our definitions are concise and
modular, and do not require the use of evaluation contexts. Definitions based on evaluation contexts are
often even more concise than the corresponding MSOS definitions, since a single alternative in a context-
free grammar for evaluation contexts subsumes an entire MSOS rule allowing evaluation of a particular
subexpression. However, such grammars are significantly less modular than MSOS rules: adding a new
control operator to a specified language may require duplication of a (potentially large) grammar [17,
e.g. pages 141–142]. (This inherent lack of modularity of evaluation context grammars is addressed in
the PLT Redex tools by the use of ellipsis.)

We initially validated our specifications through a suite of 70 test programs, which we accumulated
from examples in the literature on control operators ([1, 2, 4, 6, 9, 10, 12, 18, 19, 22, 33]). The lan-
guage we used for testing was Caml Light, a pedagogical sublanguage of a precursor to OCaml, for
which we have an existing translation to funcons from a previous case study [8]. We extended Caml
Light with control operators, and specified the semantics of those operators as direct translations into
the corresponding funcons presented in this paper. The generated funcon programs were then tested by
our prototype funcon interpreter, which directly interprets their I-MSOS specifications. The suite of test
programs, and our accompanying translator and interpreter, are available online [32].

While the test programs demonstrated that we had successfully specified a control operator that
behaves very similarly to the operator control described in the literature, they did not prove that we had
specified exactly the same operator. We addressed this in Section 5, where we proved that our MSOS
specification is equivalent to a conventional specification using a reduction semantics based on evaluation
contexts (e.g. [18, 24]).
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reported work was supported by EPSRC grant (EP/I032495/1) to Swansea University for the PLAN-
COMPS project and by EU funding (Horizon 2020, grant 640954) to KU Leuven for the GRACEFUL
project.
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