Funcons-beta : Sets.cbs | PRETTY | PDF
Sets
[
  Type   sets
  Funcon set
  Funcon set-elements
  Funcon is-in-set
  Funcon is-subset
  Funcon set-insert
  Funcon set-unite
  Funcon set-intersect
  Funcon set-difference
  Funcon set-size
  Funcon some-element
  Funcon element-not-in
]Meta-variables
  GT <: ground-valuesBuilt-in Type
  sets(GT)sets(GT) is the type of possibly-empty finite sets {V_1, ..., V_n} 
  where V_1:GT, …, V_n:GT.
Built-in Funcon
  set(_:(GT)*) : =>sets(GT)The notation {V_1, ..., V_n} for set(V_1, ..., V_n) is built-in.
Assert
  {V*:(GT)*} == set(V*)Note that set(...) is not a constructor operation. The order and duplicates
  of argument values are ignored (e.g., {1,2,1} denotes the same set as {1,2} 
  and {2,1}).
Built-in Funcon
  set-elements(_:sets(GT)) : =>(GT)*For each set S, the sequence of values V* returned by set-elements(S)
  contains each element of S just once. The order of the values in V* is
  unspecified, and may vary between sets (e.g., set-elements{1,2} could be
  (1,2) and set-elements{1,2,3} could be (3,2,1)).
Assert
  set(set-elements(S)) == Sis-in-set(GV,S) tests whether GV is in the set S.
is-subset(S1,S2) tests whether S1 is a subset of S2.
set-insert(GV, S) returns the set union of {GV} and S.
Assert
  is-in-set(GV:GT, set-insert(GV:GT, S:sets(GT))) == trueset-unite(...) unites a sequence of sets.
Assert
  set-unite(S:sets(GT), S) == S
Assert
  set-unite(S1:sets(GT), S2:sets(GT)) == set-unite(S2, S1)
Assert
  set-unite(S1:sets(GT), set-unite(S2:sets(GT), S3:sets(GT))) ==
    set-unite(set-unite(S1, S2), S3)
Assert
  set-unite(S1:sets(GT), S2:sets(GT), S3:sets(GT)) == 
    set-unite(S1, set-unite(S2, S3))
Assert
  set-unite(S:sets(GT)) == S
Assert
  set-unite( ) == { }set-intersect(GT,...) intersects a non-empty sequence of sets.
Assert
  set-intersect(S:sets(GT), S) == S
Assert
  set-intersect(S1:sets(GT), S2:sets(GT)) == set-intersect(S2, S1)
Assert
  set-intersect(S1:sets(GT), set-intersect(S2:sets(GT), S3:sets(GT))) == 
    set-intersect(set-intersect(S1, S2), S3)
Assert
  set-intersect(S1:sets(GT), S2:sets(GT), S3:sets(GT)) == 
    set-intersect(S1, set-intersect(S2, S3))
Assert
  set-intersect(S:sets(GT)) == Sset-difference(S1, S2) returns the set containing those elements of S1
  that are not in S2.
Built-in Funcon
  set-size(_:sets(GT)) : =>natural-numbersAssert
  set-size(S:sets(GT)) == length(set-elements(S))Funcon
  some-element(_:sets(GT)) : =>GT?
Assert
  some-element(S:sets(GT)) == index(1, set-elements(S))
Assert
  some-element{ } == ( )element-not-in(GT, S) gives an element of the type GT not in the set 
  S, or ( ) when S is empty. When the set of elements of GT is infinite,
  element-not-in(GT, S) never gives ( ).