\(
% cbs-katex.sty
%
\newcommand{\STYLE}[2]{\htmlClass{cbs-#1}{#2}}
\newcommand{\DECL}[3]{\htmlId{#1:#2}{#3}}
\newcommand{\REF}[3]{\href{###1:#2}{#3}}
\newcommand{\HYPER}[5]{\href{#1/#2/index.html###3:#4}{#5}}
% \SHADE{MATH} can be defined to produce a shaded background to highlight
% inline MATH in running text:
\newcommand{\SHADE}[1]{#1}
% \KEY{TEXT}, \STRING{TEXT}, \ATOM{TEXT}, \LEX{TEXT} can be used in math mode:
\newcommand{\KEY}[1]{\textsf{\textit{\STYLE{Key}{#1}}}}
\newcommand{\STRING}[1]{\textsf{``\texttt{#1}''}}
\newcommand{\ATOM}[1]{\textsf{`\texttt{#1}'}}
\newcommand{\LEX}[1]{\textsf{\STYLE{Key}{`}\texttt{#1}\STYLE{Key}{'}}}
% The following commands produce ASCII characters that are treated specially by LaTeX:
\newcommand{\HASH}{\char`\#}
\newcommand{\DOLLAR}{\char`\$}
\newcommand{\PERCENT}{\char`\%}
\newcommand{\AMPERSAND}{\char`\&}
\newcommand{\APOSTROPHE}{\char`\'}
\newcommand{\BACKSLASH}{\char`\\}
\newcommand{\CARET}{\char`\^}
\newcommand{\UNDERSCORE}{\char`\_}
\newcommand{\GRAVE}{\char`\`}
\newcommand{\LEFTBRACE}{\char`\{}
\newcommand{\RIGHTBRACE}{\char`\}}
\newcommand{\TILDE}{\textasciitilde} % {\char`\~}
% \NAME{name} highlights the name;
% \NAMEDECL{name} declares Name.name as the target of links to name;
% \NAMEREF{name} links name to the target Name.name in the current file;
% \NAMEHYPER{url}{file}{name} links name to Name.name at url/file/file.pdf.
% Similarly for \VAR{partvariable}, \SYN{syntaxname}, \SEM{semanticsName},
% and \SECT{sectionnumber}
% The kerns in \SUB and \VAR avoid overlaps with primes:
\newcommand{\SUB}[1]{_{\kern-2mu\STYLE{PartVariable}{\textsf{#1}}}}
% PLAIN
\newcommand{\VAR}[1]{\STYLE{PartVariable}{\textsf{\textit{#1}\kern2mu}}}
\newcommand{\NAME}[1]{\STYLE{Name}{\textsf{#1}}}
\newcommand{\SYN}[1]{\STYLE{SyntaxName}{\textsf{#1}}}
\newcommand{\SEM}[1]{\STYLE{SemanticsName}{\textsf{#1}}}
\newcommand{\SECT}[1]{\STYLE{SectionNumber}{\textsf{#1}}}
% DECL
\newcommand{\VARDECL}[1]{\DECL{PartVariable}{#1}{\VAR{#1}}}
\newcommand{\NAMEDECL}[1]{\DECL{Name}{#1}{\NAME{#1}}}
\newcommand{\SYNDECL}[1]{\DECL{SyntaxName}{#1}{\SYN{#1}}}
\newcommand{\SEMDECL}[1]{\DECL{SemanticsName}{#1}{\SEM{#1}}}
\newcommand{\SECTDECL}[1]{\DECL{SectionNumber}{#1}{\textsf{#1}}}
% REF
\newcommand{\VARREF}[1]{\REF{PartVariable}{#1}{\VAR{#1}}}
\newcommand{\NAMEREF}[1]{\REF{Name}{#1}{\NAME{#1}}}
\newcommand{\SYNREF}[1]{\REF{SyntaxName}{#1}{\SYN{#1}}}
\newcommand{\SEMREF}[1]{\REF{SemanticsName}{#1}{\SEM{#1}}}
\newcommand{\SECTREF}[1]{\REF{SectionNumber}{#1}{\SECT{#1}}}
% HYPER
\newcommand{\VARHYPER}[3]{\HYPER{#1}{#2}{PartVariable}{#3}{\VAR{#3}}}
\newcommand{\NAMEHYPER}[3]{\HYPER{#1}{#2}{Name}{#3}{\NAME{#3}}}
\newcommand{\SYNHYPER}[3]{\HYPER{#1}{#2}{SyntaxName}{#3}{\SYN{#3}}}
\newcommand{\SEMHYPER}[3]{\HYPER{#1}{#2}{SemanticsName}{#3}{\SEM{#3}}}
\newcommand{\SECTHYPER}[3]{\HYPER{#1}{#2}{SectionNumber}{#3}{\SECT{#3}}}
% \LEFTPHRASE MATH \RIGHTPHRASE produces [[ MATH ]] with proper brackets:
\newcommand{\LEFTPHRASE}{\llbracket}
\newcommand{\RIGHTPHRASE}{\rrbracket}
% \LEFTGROUP MATH \RIGHTGROUP produces ( MATH ) where the parentheses are
% highlighted the same as keywords:
\newcommand{\LEFTGROUP}{\STYLE{Key}{(}}
\newcommand{\RIGHTGROUP}{\STYLE{Key}{)}}
% MATH\PLUS produces a superscript +
% MATH\STAR produces a superscript *
% MATH\QUERY produces a superscript ?
\newcommand{\PLUS}{{}^{\texttt{+}}}
\newcommand{\STAR}{{}^{\texttt{*}}}
\newcommand{\QUERY}{{}^{\texttt{?}}}
% \RULE{& PREMISE \\ & ...}{& FORMULA ... \\ & ...} produces an inference rule
% with separately aligned premises and conclusion
% PREMISE
% ...
% -----------
% FORMULA ...
% ...
\newcommand{\RULE}[2]
{\frac{\begin{aligned}#1\end{aligned}}{\begin{aligned}#2\end{aligned}}}
% \AXIOM{& FORMULA ... \\ & ...} produces an aligned formula
%
% FORMULA ...
% ...
\newcommand{\AXIOM}[1]{\begin{aligned}#1\end{aligned}}
% \TO TYPE produces => TYPE
\newcommand{\TO}{\mathop{\Rightarrow}}
% TERM \TRANS TERM produces TERM ---> TERM
\newcommand{\TRANS}{\longrightarrow}
% TERM \xrightarrow{LABEL} TERM puts the label above the long arrow
%
\)
Composite values
Conceptually, composite values are constructed from sequences of argument values.
The types of composite values include parametrised algebraic data types, with a generic representation.
Various algebraic datatypes are defined, and new ones can be introduced.
Composite values include also built-in parametrised types of sets, maps, multi-sets, and graphs.
A composite value can always be decomposed into a sequence of values from which it can be reconstructed.
For algebraic datatypes such as lists, the decomposition is unique.
For a built-in type such as sets, the funcon provided to compute values is not a constructor. and it may compute the same composite value from different sequences of arguments.
All composite ground values can be tested for equality.
The CBS library includes types of composite values corresponding to the following concepts:
Algebraic datatypes
Algebraic datatypes correspond to unions of subtypes,
The values of each subtype generally consist of a fixed constructor identifier together with different sequences of argument values.
The constructors can be declared separately from the types of their values, supporting GADTs.
The following types of composite values are all built-in.
The funcons used to compute such values are not regarded as constructors, as they are not injective.